scholarly journals Molecular Insights into Host and Vector Manipulation by Plant Viruses

Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 263 ◽  
Author(s):  
Véronique Ziegler-Graff

Plant viruses rely on both host plant and vectors for a successful infection. Essentially to simplify studies, transmission has been considered for decades as an interaction between two partners, virus and vector. This interaction has gained a third partner, the host plant, to establish a tripartite pathosystem in which the players can react with each other directly or indirectly through changes induced in/by the third partner. For instance, viruses can alter the plant metabolism or plant immune defence pathways to modify vector’s attraction, settling or feeding, in a way that can be conducive for virus propagation. Such changes in the plant physiology can also become favourable to the vector, establishing a mutualistic relationship. This review focuses on the recent molecular data on the interplay between viral and plant factors that provide some important clues to understand how viruses manipulate both the host plants and vectors in order to improve transmission conditions and thus ensuring their survival.

2015 ◽  
Vol 84 (4) ◽  
pp. 233-248
Author(s):  
Elżbieta Cichocka ◽  
Wojciech Goszczyński ◽  
Magdalena Lubiarz

Abstract We present significant information about damage caused to plants by the feeding of piercing–sucking insects, based on the example of aphids. Research concerning the impact of aphids on their host plants was already being carried out in the 1950s in the 20th century, but it is still being undertaken as it is very important. Aphid feeding causes deformation of plant tissues, disorders in plant metabolism and changes in the amount of various compounds in plant tissues. Plant viruses are transmitted in aphid saliva.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 791
Author(s):  
Sarah François ◽  
Aymeric Antoine-Lorquin ◽  
Maximilien Kulikowski ◽  
Marie Frayssinet ◽  
Denis Filloux ◽  
...  

Advances in viral metagenomics have paved the way of virus discovery by making the exploration of viruses in any ecosystem possible. Applied to agroecosystems, such an approach opens new possibilities to explore how viruses circulate between insects and plants, which may help to optimise their management. It could also lead to identifying novel entomopathogenic viral resources potentially suitable for biocontrol strategies. We sampled the larvae of a natural population of alfalfa weevils (Hypera postica), a major herbivorous pest feeding on legumes, and its host plant alfalfa (Medicago sativa). Insect and plant samples were collected from a crop field and an adjacent meadow. We characterised the diversity and abundance of viruses associated with weevils and alfalfa, and described nine putative new virus species, including four associated with alfalfa and five with weevils. In addition, we found that trophic accumulation may result in a higher diversity of plant viruses in phytophagous pests compared to host plants.


2006 ◽  
pp. 197-210 ◽  
Author(s):  
Slobodan Milanovic ◽  
Mara Tabakovic-Tosic ◽  
Nenad Markovic

The effect of two host plants, Turkey oak (Quercus cerris L) and black poplar (Populus nigra L) on gypsy moth (Lymantria dispar L) development was researched. The effect of host plant was determined based on the parameters which characterize the diet, growth and efficacy of conversion of ingested food of the third instar caterpillars. Along with the effect on development, the effect of host plant on the efficacy of biological preparation based on the bacterium Bacillus thuringiensis var. kurstaki in gypsy moth caterpillar suppression was also researched. The differences in parameters characterizing the diet, growth, and efficacy of ingested food between experimental groups of caterpillars grown on poplar and Turkey oak leaves are explained by the differences in the chemical composition of the leaves of these tree species. The efficacy of Btk preparation is conditioned by the mechanism and content of different groups of defense substances in the leaves of the applied tree species.


2021 ◽  
Author(s):  
Jun Jiang ◽  
Eric Yu ◽  
Clare L L Casteel

To establish successful infections, plant viruses compete with the host plants for limited resources and thus alter the physiological state of the plants. After successful infection, insect vectors are required for the transmission of some plant viruses to the next host plant. One of the largest groups of plant viruses, the potyvirus, can be transmitted by aphids. During transmission, the potyvirus protein helper component proteinase (HC-Pro) binds to the yet-to-be-defined aphid receptor on the stylet, as well as to the virus particles through the Asp-Ala-Gly (DAG) motif of the viral coat protein. Previously it was determined that a naturally occurring DAG motif in the non-aphid transmissible potexvirus, Potato aucuba mosaic potexvirus (PAMV), is functional when the HC-Pro is provided through co-infection with a potyvirus. Further, the DAG motif of PAMV can be successfully transferred to another non-aphid transmissible potexvirus, Potato virus X (PVX), to convey aphid transmission capabilities. We expand on this previous work by demonstrating, the DAG motif from two different potyviruses, Sugarcane mosaic virus and Turnip mosaic virus, as well as the DAG motif from the previous potexvirus PAMV, can be added to another non-aphid transmissible potexvirus, Foxtail mosaic virus (FoMV), to make it aphid transmissible. Transmission efficiency varied from less than 10% to over 80% depending on the DAG motif and host plant used in transmission, suggesting not all DAG motifs are equal for engineering aphid transmission. The underlying mechanisms mediating this variation still need to be explored.


Author(s):  
Qiang Li ◽  
Xiaolan Lin ◽  
Junjie Li ◽  
Bing Liu ◽  
Xiaolei Huang

Abstract Divergent adaptation to different ecological conditions is regarded as important for speciation. For phytophagous insects, there is limited empirical evidence on species differentiation driven by climate and host plant. The recent application of molecular data and integrative taxonomic practice may improve our understanding of population divergence and speciation. Periphyllus koelreuteriae aphids feed exclusively on Koelreuteria (Sapindaceae) in temperate and subtropical regions of eastern Asia, and show morphological and phenological variations in different regions. In this study, phylogenetic and haplotype network analyses based on four genes revealed that P. koelreuteriae populations comprised three distinct genetic clades corresponding to climate and host plants, with the populations from subtropical highland regions and on Koelreuteria bipinnata host plants representing the most basal clade. These genetic lineages also showed distinct characteristics in terms of morphology and life cycle. The results indicate that P. koelreuteriae is a species complex with previously unrevealed lineages, whose differentiation may have been driven by climatic difference and host plant.


2019 ◽  
Vol 70 (1) ◽  
pp. 27-30
Author(s):  
Toni Koren ◽  
Matea Martinović

The caterpillars of the Southern Swallowtail, Papilio alexanor have been recorded in the vicinity of Trebinje, Bosnia & Herzegovina. This is the first recent observation of this species in the country and the third observation so far. Opopanax chironium is confirmed as the larval host plant in Bosnia and Herzegovina, which was expected due to the recent observations from Croatia. Its status and distribution in the country are still not clear, and further surveys are recommended in order to reconfirm the historical records as well as to assess its current conservation status. Due to the limited extent of its occurrence, we propose to include it in the Red list of fauna of Bosnia & Herzegovina as Vulnerable (VU).


Author(s):  
Marcin W. Zielonka ◽  
Tom W. Pope ◽  
Simon R. Leather

Abstract The carnation tortrix moth, Cacoecimorpha pronubana (Hübner, [1799]) (Lepidoptera: Tortricidae), is one of the most economically important insect species affecting the horticultural industry in the UK. The larvae consume foliage, flowers or fruits, and/or rolls leaves together with silken threads, negatively affecting the growth and/or aesthetics of the crop. In order to understand the polyphagous behaviour of this species within an ornamental crop habitat, we hypothesized that different host plant species affect its life history traits differently. This study investigated the effects of the host plant species on larval and pupal durations and sizes, and fecundity (the number of eggs and the number and size of egg clutches). At 20°C, 60% RH and a 16L:8D photoperiod larvae developed 10, 14, 20 and 36 days faster when reared on Christmas berry, Photinia (Rosaceae), than on cherry laurel, Prunus laurocerasus (Rosaceae), New Zealand broadleaf, Griselinia littoralis (Griseliniaceae), Mexican orange, Choisya ternata (Rutaceae), and firethorn, Pyracantha angustifolia (Rosaceae), respectively. Female pupae were 23.8 mg heavier than male pupae, and pupal weight was significantly correlated with the duration of larval development. The lowest and the highest mean numbers of eggs were produced by females reared on Pyracantha (41) and Photinia (202), respectively. Clutch size differed significantly among moths reared on different host plants, although the total number of eggs did not differ. This study showed that different ornamental host plants affect the development of C. pronubana differently. Improved understanding of the influence of host plant on the moth's life history parameters measured here will help in determining the economic impact that this species may have within the ornamental plant production environment, and may be used in developing more accurate crop protection methodologies within integrated pest management of this insect.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Belén Cotes ◽  
Gunda Thöming ◽  
Carol V. Amaya-Gómez ◽  
Ondřej Novák ◽  
Christian Nansen

AbstractRoot-associated entomopathogenic fungi (R-AEF) indirectly influence herbivorous insect performance. However, host plant-R-AEF interactions and R-AEF as biological control agents have been studied independently and without much attention to the potential synergy between these functional traits. In this study, we evaluated behavioral responses of cabbage root flies [Delia radicum L. (Diptera: Anthomyiidae)] to a host plant (white cabbage cabbage Brassica oleracea var. capitata f. alba cv. Castello L.) with and without the R-AEF Metarhizium brunneum (Petch). We performed experiments on leaf reflectance, phytohormonal composition and host plant location behavior (behavioral processes that contribute to locating and selecting an adequate host plant in the environment). Compared to control host plants, R-AEF inoculation caused, on one hand, a decrease in reflectance of host plant leaves in the near-infrared portion of the radiometric spectrum and, on the other, an increase in the production of jasmonic, (+)-7-iso-jasmonoyl-l-isoleucine and salicylic acid in certain parts of the host plant. Under both greenhouse and field settings, landing and oviposition by cabbage root fly females were positively affected by R-AEF inoculation of host plants. The fungal-induced change in leaf reflectance may have altered visual cues used by the cabbage root flies in their host plant selection. This is the first study providing evidence for the hypothesis that R-AEF manipulate the suitability of their host plant to attract herbivorous insects.


Nematology ◽  
2004 ◽  
Vol 6 (3) ◽  
pp. 375-387 ◽  
Author(s):  
N. Aileen Ryan ◽  
Peter Jones

AbstractSeventy bacteria, isolated from the rhizosphere of the potato cyst nematode (PCN) host plant, potato, were cultured in the presence and absence of potato root leachate (PRL) and the resultant culture filtrates were analysed for their ability to affect the hatch in vitro of the two PCN species. Of the isolates tested, nine had a significant effect on PCN hatch. Six affected Globodera pallida hatch and three affected G. rostochiensis hatch. Five of the isolates significantly increased hatch only when cultured in the presence of PRL. Three of the isolates decreased PCN hatch significantly in PRL. Only one isolate increased hatch significantly in the absence of PRL. No isolate affected the hatch of both species. Six of the nine isolates that significantly affected PCN hatch had been pre-selected by culturing on PRL. Bacterial isolates from PCN non-hosts (14 from wheat, 17 from sugar beet) were also tested for hatching activity. The principal effect of the hatch-active isolates from the PCN non-host plants was to increase PCN hatch in the presence of PRL. In contrast to the host bacteria results, the isolates from non-host plants affected only G. rostochiensis hatch (three wheat isolates and four sugar beet isolates significantly increased G. rostochiensis hatch); no such isolate affected G. pallida hatch significantly in the presence of PRL. Ten isolates (32%) from non-host plants had the ability to increase significantly the hatch of PCN in the absence of PRL (eight of these affected G. rostochiensis hatch and four affected G. pallida hatch), compared to only one bacterial isolate (1%) from a host plant. The majority of the isolates from non-hosts produced PCN species-specific effects, as with the bacteria isolated from potatoes, although two wheat isolates increased the hatch of both species significantly in the absence of PRL. Of 20 hatch-active bacterial isolates (from all three plants) identified, 70% were Bacillus spp. Other genera identified were Arthrobacter , Acinetobacter and Staphylococcus .


1995 ◽  
Vol 73 (S1) ◽  
pp. 453-458 ◽  
Author(s):  
Hiroshi Otani ◽  
Keisuke Kohmoto ◽  
Motoichiro Kodama

There are now nine or more Alternaria pathogens that produce host-specific toxins, and the structures of most of the toxins have been elucidated. Alternaria host-specific toxins are classified in three groups in terms of the primary site action. ACT-, AF-, and AK-toxins have in common an epoxy-decatrienoic acid structure and exert their primary effect on the plasma membrane of susceptible cells. A rapid increase in electrolyte loss from tissues and invaginations in the plasma membranes are common effects of these toxins. The second group is represented by ACR(L)-toxin, which induces changes in mitochondria, including swelling, vesiculation of cristae, decrease in the electron density of the matrix, increase in the rate of NADH oxidation, and inhibition of malate oxidation. The third group consists of AM-toxin, which appears to exert an early effect on both chloroplasts and plasma membranes. AM-toxin induces vesiculation of grana lamellae, inhibition of CO2 fixation, invagination of plasma membranes, and electrolyte loss. The roles of host-specific toxins in pathogenesis are discussed. Key words: Alternaria, host-specific toxin, plasma membrane, mitochondrion, chloroplast.


Sign in / Sign up

Export Citation Format

Share Document