scholarly journals Forced Zika Virus Infection of Culex pipiens Leads to Limited Virus Accumulation in Mosquito Saliva

Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 659 ◽  
Author(s):  
Sandra R. Abbo ◽  
Chantal B. F. Vogels ◽  
Tessa M. Visser ◽  
Corinne Geertsema ◽  
Monique M. van Oers ◽  
...  

Zika virus (ZIKV) is a mosquito-borne pathogen that caused a large outbreak in the Americas in 2015 and 2016. The virus is currently present in tropical areas around the globe and can cause severe disease in humans, including Guillain-Barré syndrome and congenital microcephaly. The tropical yellow fever mosquito, Aedes aegypti, is the main vector in the urban transmission cycles of ZIKV. The discovery of ZIKV in wild-caught Culex mosquitoes and the ability of Culex quinquefasciatus mosquitoes to transmit ZIKV in the laboratory raised the question of whether the common house mosquito Culex pipiens, which is abundantly present in temperate regions in North America, Asia and Europe, could also be involved in ZIKV transmission. In this study, we investigated the vector competence of Cx. pipiens (biotypes molestus and pipiens) from the Netherlands for ZIKV, using Usutu virus as a control. After an infectious blood meal containing ZIKV, none of the tested mosquitoes accumulated ZIKV in the saliva, although 2% of the Cx. pipiens pipiens mosquitoes showed ZIKV–positive bodies. To test the barrier function of the mosquito midgut on virus transmission, ZIKV was forced into Cx. pipiens mosquitoes by intrathoracic injection, resulting in 74% (molestus) and 78% (pipiens) ZIKV–positive bodies. Strikingly, 14% (molestus) and 7% (pipiens) of the tested mosquitoes accumulated ZIKV in the saliva after injection. This is the first demonstration of ZIKV accumulation in the saliva of Cx. pipiens upon forced infection. Nevertheless, a strong midgut barrier restricted virus dissemination in the mosquito after oral exposure and we, therefore, consider Cx. pipiens as a highly inefficient vector for ZIKV.

Pathogens ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 67 ◽  
Author(s):  
Heidi Knecht ◽  
Stephanie Richards ◽  
Jo Balanay ◽  
Avian White

Zika virus (ZIKV) is primarily transmitted to humans by Aedes aegypti and Ae. albopictus. Vector–virus interactions influencing vector competence vary and depend on biological and environmental factors. A mosquito’s chronological age may impact its immune response against virus infection. Insecticides, source reduction, and/or public education are currently the best defense against mosquitoes that transmit ZIKV. This study assessed the effects of a mosquito’s chronological age at time of infection on its response to ZIKV infection. We exposed young (6–7 d post-emergence) and old (11–12 d post-emergence) Ae. albopictus to a sublethal dose of bifenthrin prior to oral exposure to blood meals containing ZIKV (7-day incubation period). Old mosquitoes experienced a significantly (p < 0.01) higher rate of mortality than young mosquitoes. Significantly higher ZIKV body titers (p < 0.01) were observed in the old control group compared to the young control group. Significantly higher (p < 0.01) ZIKV dissemination rates and leg titers (p < 0.01) were observed in old bifenthrin-exposed mosquitoes compared to old control mosquitoes or young bifenthrin-exposed or control mosquitoes. Hence, bifenthrin exposure may increase the potential for virus transmission; however, the degree of these impacts varies with mosquito age. Impacts of insecticides should be considered in risk assessments of potential vector populations.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 177 ◽  
Author(s):  
Tereza Magalhaes ◽  
Alexis Robison ◽  
Michael Young ◽  
William Black ◽  
Brian Foy ◽  
...  

In urban settings, chikungunya, Zika, and dengue viruses are transmitted by Aedes aegypti mosquitoes. Since these viruses co-circulate in several regions, coinfection in humans and vectors may occur, and human coinfections have been frequently reported. Yet, little is known about the molecular aspects of virus interactions within hosts and how they contribute to arbovirus transmission dynamics. We have previously shown that Aedes aegypti exposed to chikungunya and Zika viruses in the same blood meal can become coinfected and transmit both viruses simultaneously. However, mosquitoes may also become coinfected by multiple, sequential feeds on single infected hosts. Therefore, we tested whether sequential infection with chikungunya and Zika viruses impacts mosquito vector competence. We exposed Ae. aegypti mosquitoes first to one virus and 7 days later to the other virus and compared infection, dissemination, and transmission rates between sequentially and single infected groups. We found that coinfection rates were high after sequential exposure and that mosquitoes were able to co-transmit both viruses. Surprisingly, chikungunya virus coinfection enhanced Zika virus transmission 7 days after the second blood meal. Our data demonstrate heterologous arbovirus synergism within mosquitoes, by unknown mechanisms, leading to enhancement of transmission under certain conditions.


Author(s):  
O. V. Maletskaya ◽  
V. M. Dubyansky ◽  
A. I. Belyaeva ◽  
L. I. Shaposhnikova ◽  
D. S. Agapitov ◽  
...  

Aim. Chracteristic of number and distribution of mosquitoes Ae. aegypti and Ae. albopictus in the Republic of Abkhazia and a risk assessment of virus Zika spread. Materials and methods. The accounting of mosquitoes number was made by the method «on the observer» in 20 minutes at the 70 nature landscapes points in april-oktober 2016. Results. The Black sea coast of the Republic of Abkhazia has favorable ecological conditions for the mosquitoes ingrowth of Ae. aegypti and Ae. albopictus. At 2016 the mosquitoes Ae. albopictus having vector competence to spread a Zika virus, has been revealed in the open stations in the territory from Ochamchirsky district to border with the Russian Federation. Their number is correlated with the air temperature in the region. The control of efficiency of the insecticidal works showed that in the open stations Ae. albopictus were not found within 3 - 7 days after the disinsection actions. However, their number of recovered as a result of settling from nearby natural biotopes. Conclusion. The risk of local Zika virus transmission has estimated as a low. Considering the gravity of the disease caused by the Zika virus carrying out a wider complex of the control methods of the mosquitoes number in areas of their dwelling, especially on the epidemiologically significant objects is necessary. The most effective of the population protection action is riddance of the reproduction mosquitoes places and sanitation of territory.


2018 ◽  
Author(s):  
Blanka Tesla ◽  
Leah R. Demakovsky ◽  
Erin A. Mordecai ◽  
Sadie J. Ryan ◽  
Matthew H. Bonds ◽  
...  

AbstractTemperature is a strong driver of vector-borne disease transmission. Yet, for emerging arboviruses we lack fundamental knowledge on the relationship between transmission and temperature. Current models rely on the untested assumption that Zika virus responds similarly to dengue virus, potentially limiting our ability to accurately predict the spread of Zika. We conducted experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period, and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent model to infer temperature effects on ZIKV transmission. ZIKV transmission was optimized at 29°C, and had a thermal range of 22.7°C - 34.7°C. Thus, as temperatures move toward the predicted thermal optimum (29°C) due to climate change, urbanization, or seasonally, Zika could expand north and into longer seasons. In contrast, areas that are near the thermal optimum were predicted to experience a decrease in overall environmental suitability. We also demonstrate that the predicted thermal minimum for Zika transmission is 5°C warmer than that of dengue, and current global estimates on the environmental suitability for Zika are greatly over-predicting its possible range.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3096 ◽  
Author(s):  
Brittany L. Dodson ◽  
Jason L. Rasgon

Zika virus is a newly emergent mosquito-borne flavivirus that has caused recent large outbreaks in the new world, leading to dramatic increases in serious disease pathology including Guillain-Barre syndrome, newborn microcephaly, and infant brain damage. AlthoughAedesmosquitoes are thought to be the primary mosquito species driving infection, the virus has been isolated from dozens of mosquito species, includingCulexandAnophelesspecies, and we lack a thorough understanding of which mosquito species to target for vector control. We exposedAnopheles gambiae,Anopheles stephensi, andCulex quinquefasciatusmosquitoes to blood meals supplemented with two Zika virus strains. Mosquito bodies, legs, and saliva were collected five, seven, and 14 days post blood meal and tested for infectious virus by plaque assay. Regardless of titer, virus strain, or timepoint,Anopheles gambiae,Anopheles stephensi, andCulex quinquefasciatusmosquitoes were refractory to Zika virus infection. We conclude thatAnopheles gambiae,Anopheles stephensi, andCulex quinquefasciatusmosquitoes likely do not contribute significantly to Zika virus transmission to humans. However, future studies should continue to explore the potential for other novel potential vectors to transmit the virus.


2018 ◽  
Vol 23 (29) ◽  
Author(s):  
Anna Heitmann ◽  
Stephanie Jansen ◽  
Renke Lühken ◽  
Michelle Helms ◽  
Björn Pluskota ◽  
...  

Background Over the last decade, the abundant distribution of the Asian tiger mosquito Aedes albopictus in southern Europe and the import of chikungunya virus (CHIKV) by infected travellers has resulted in at least five local outbreaks of chikungunya fever in France and Italy. Considering the ongoing spread of Ae. albopictus to central Europe, we performed an analysis of the Europe-wide spatial risk of CHIKV transmission under different temperature conditions. Methods: Ae. albopictus specimens from Germany and Italy were orally infected with CHIKV from an outbreak in France and kept for two weeks at 18 °C, 21 °C or 24 °C. A salivation assay was conducted to detect infectious CHIKV. Results: Analyses of mosquito saliva for infectious virus particles demonstrated transmission rates (TRs) of > 35%. Highest TRs of 50% for the mosquito population from Germany were detected at 18 °C, while the Italian population had highest TRs of 63% at 18 °C and 21 °C, respectively. Temperature data indicated a potential risk of CHIKV transmission for extended durations, i.e. sufficiently long time periods allowing extrinsic incubation of the virus. This was shown for areas already colonised by Ae. albopictus, as well as for large parts of central Europe that are not colonised. Conclusion: The current risk of CHIKV transmission in Europe is not primarily restricted by temperature, which allows extrinsic incubation of the virus, but rather by the vector distribution. Accordingly, all European countries with established populations of Ae. albopictus should implement respective entomological surveillance and monitoring systems, as basis for suitable control measures.


2018 ◽  
Vol 285 (1884) ◽  
pp. 20180795 ◽  
Author(s):  
Blanka Tesla ◽  
Leah R. Demakovsky ◽  
Erin A. Mordecai ◽  
Sadie J. Ryan ◽  
Matthew H. Bonds ◽  
...  

Temperature is a strong driver of vector-borne disease transmission. Yet, for emerging arboviruses we lack fundamental knowledge on the relationship between transmission and temperature. Current models rely on the untested assumption that Zika virus responds similarly to dengue virus, potentially limiting our ability to accurately predict the spread of Zika. We conducted experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent model to infer temperature effects on ZIKV transmission. ZIKV transmission was optimized at 29°C, and had a thermal range of 22.7°C–34.7°C. Thus, as temperatures move towards the predicted thermal optimum (29°C) owing to climate change, urbanization or seasonality, Zika could expand north and into longer seasons. By contrast, areas that are near the thermal optimum were predicted to experience a decrease in overall environmental suitability. We also demonstrate that the predicted thermal minimum for Zika transmission is 5°C warmer than that of dengue, and current global estimates on the environmental suitability for Zika are greatly over-predicting its possible range.


2020 ◽  
Vol 44 ◽  
pp. 1
Author(s):  
Sandro G. Viveiros-Rosa ◽  
Eduardo G. Regis ◽  
Wilson C. Santos

Objective. To identify studies on the competence of Culex mosquitoes as vectors for the transmission of Zika virus (ZIKV) around the globe. Methods. We performed an integrative review to identify relevant articles on specific experiments to determine whether Culex mosquitoes are vectors for ZIKV. The sources we used for our research were the Brazilian Periódicos CAPES electronic portal (MEDLINE/PubMed, ScienceDirect Journals, Nature Publishing Group, SciELO, Springer Link, and 250 other databases) and gray literature. Results. We identified 344 studies, of which 36 were considered for this review. In 8 studies, infection in salivary glands of Culex quinquefasciatus, Culex restuans, Culex tarsalis, and Culex coronator was detected. Cx. quinquefasciatus was the most studied among those confirmed as potential ZIKV vectors, and only strains of Asian lineages (THA/2014/SV0127-14; SZ01 (2016)) and American lineages (BRPE243 (2015); PRVABC59 (2015)) can infect the salivary glands of Culex mosquitoes. The tested African strains (MR766 and DAK AR 41525) were unable to infect salivary glands. Conclusions. There is still a lack of compelling evidence that indicates Culex spp. are a competent ZIKV vector, but they should remain a target for further monitoring studies, especially regarding ZIKV transmission to other species. Furthermore, studies should not be limited to studying whether their salivary glands are infected.


2018 ◽  
Author(s):  
Irina Maljkovic Berry ◽  
Fredrick Eyase ◽  
Simon Pollett ◽  
Samson Limbaso Konongoi ◽  
Katherine Figueroa ◽  
...  

AbstractBackgroundIn 2016, a chikungunya virus (CHIKV) outbreak was reported in Mandera, Kenya. This was the first major CHIKV outbreak in the country since the global re-emergence of this virus, which arose as an initial outbreak in Kenya in 2004. Therefore, we collected samples and sequenced viral genomes from the 2016 Mandera outbreak.Methodology/Principal FindingsAll Kenyan genomes contained two mutations, E1:K211E and E2:V264A, recently reported to have an association with increased infectivity, dissemination and transmission in the Aedes aegypti (Ae. aegypti) vector. Phylogeographic inference of temporal and spatial virus relationships using Bayesian approaches showed that this Ae. aegypti adapted strain emerged within the East, Central, and South African (ECSA) lineage of CHIKV between 2005 and 2008, most probably in India. It was also in India where the first large outbreak caused by this strain appeared, in New Delhi, 2010. More importantly, our results also showed that this strain is no longer contained to India, and that it has more recently caused several major outbreaks of CHIKV, including the 2016 outbreaks in India, Pakistan and Kenya, and the 2017 outbreak in Bangladesh. In addition to its capability to cause large outbreaks in different regions of the world, this CHIKV strain has the capacity to replace less adapted wild type strains in Ae. aegypti-rich regions. Indeed, all the latest full CHIKV genomes of the ECSA Indian Ocean Lineage (IOL), from the regions of high Ae. aegypti prevalence, carry these two mutations, including samples collected in Japan, Australia, and China.Conclusions/SignificanceOur results point to the importance of continued genomic-based surveillance of this strain’s global spread, and they prompt urgent vector competence studies in Asian and African countries, in order to assess the level of vector receptiveness, virus transmission, and the impact this might have on this strain’s ability to cause major outbreaks.Author summaryChikungunya virus (CHIKV) causes a debilitating infection with high fever, intense muscle and bone pain, rash, nausea, vomiting and headaches, and persistent and/or recurrent joint pains for months or years after contracting the virus. CHIKV is spread by two mosquito vectors, Aedes albopictus and Aedes aegypti, with increased presence around the globe. In this study, we report global spread of a CHIKV strain that carries two mutations that have been suggested to increase this virus’ ability to infect the Aedes aegypti mosquito, as well as to increase CHIKV’s ability to be transmitted by this vector. We show that this strain appeared sometime between 2005 and 2008, most probably in India, and has now spread to Africa, Asia, and Australia. We show that this strain is capable of driving large outbreaks of CHIKV in the human population, causing recent major outbreaks in Kenya, Pakistan, India and Bangladesh. Thus, our results stress the importance of monitoring this strain’s global spread, as well as the need of improved vector control strategies in the areas of Aedes aegypti prevalence.


Sign in / Sign up

Export Citation Format

Share Document