scholarly journals Significantly Improved Recovery of Recombinant Sonchus Yellow Net Rhabdovirus by Expressing the Negative-Strand Genomic RNA

Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1459
Author(s):  
Xiaonan Ma ◽  
Zhenghe Li

Generation of recombinant negative-stranded RNA viruses (NSVs) from plasmids involves in vivo reconstitution of biologically active nucleocapsids and faces a unique antisense problem where the negative-sense viral genomic RNAs can hybridize to viral messenger RNAs. To overcome this problem, a positive-sense RNA approach has been devised through expression of viral antigenomic (ag)RNA and core proteins for assembly of antigenomic nucleocapsids. Although this detour strategy works for many NSVs, the process is still inefficient. Using Sonchus yellow net rhabdovirus (SYNV) as a model; here, we develop a negative-sense genomic RNA-based approach that increased rescue efficiency by two orders of magnitude compared to the conventional agRNA approach. The system relied on suppression of double-stranded RNA induced antiviral responses by co-expression of plant viruses-encoded RNA silencing suppressors or animal viruses-encoded double-stranded RNA antagonists. With the improved approach, we were able to recover a highly attenuated SYNV mutant with a deletion in the matrix protein gene which otherwise could not be rescued via the agRNA approach. Reverse genetics analyses of the generated mutant virus provided insights into SYNV virion assembly and morphogenesis. This approach may potentially be applicable to other NSVs of plants or animals.

2011 ◽  
Vol 92 (5) ◽  
pp. 1199-1204 ◽  
Author(s):  
Hao Wang ◽  
Antti Vaheri ◽  
Friedemann Weber ◽  
Alexander Plyusnin

dsRNA and 5′-triphosphate RNA are considered critical activators of the innate immune response because of their interaction with pattern recognition receptors. It has been reported that no dsRNA is detected in negative-sense RNA virus-infected cells and that Hantaan virus (HTNV) genomic RNA bears a 5′ monophosphate group. In this paper we examine the 5′ termini of genomic RNAs of and dsRNA production by two major groups of Old World hantaviruses. No detectable amounts of dsRNA were found in infected cells. Also, the genomic RNAs of these hantaviruses bear a 5′ monophosphate group and therefore are unable to trigger interferon induction. Taken together with the earlier data on HTNV, these results suggest that in addition to the dsRNA and genomic RNA, which may be only minimally involved in the induction of innate immunity, other cellular signalling pathways may also be involved and that these await further investigation.


2019 ◽  
Vol 47 (13) ◽  
pp. 7003-7017 ◽  
Author(s):  
Lisa Marie Simon ◽  
Edoardo Morandi ◽  
Anna Luganini ◽  
Giorgio Gribaudo ◽  
Luis Martinez-Sobrido ◽  
...  

AbstractThe influenza A virus (IAV) is a continuous health threat to humans as well as animals due to its recurring epidemics and pandemics. The IAV genome is segmented and the eight negative-sense viral RNAs (vRNAs) are transcribed into positive sense complementary RNAs (cRNAs) and viral messenger RNAs (mRNAs) inside infected host cells. A role for the secondary structure of IAV mRNAs has been hypothesized and debated for many years, but knowledge on the structure mRNAs adopt in vivo is currently missing. Here we solve, for the first time, the in vivo secondary structure of IAV mRNAs in living infected cells. We demonstrate that, compared to the in vitro refolded structure, in vivo IAV mRNAs are less structured but exhibit specific locally stable elements. Moreover, we show that the targeted disruption of these high-confidence structured domains results in an extraordinary attenuation of IAV replicative capacity. Collectively, our data provide the first comprehensive map of the in vivo structural landscape of IAV mRNAs, hence providing the means for the development of new RNA-targeted antivirals.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009757
Author(s):  
Hao Hong ◽  
Chunli Wang ◽  
Ying Huang ◽  
Min Xu ◽  
Jiaoling Yan ◽  
...  

Antiviral RNA silencing/interference (RNAi) of negative-strand (-) RNA plant viruses (NSVs) has been studied less than for single-stranded, positive-sense (+)RNA plant viruses. From the latter, genomic and subgenomic mRNA molecules are targeted by RNAi. However, genomic RNA strands from plant NSVs are generally wrapped tightly within viral nucleocapsid (N) protein to form ribonucleoproteins (RNPs), the core unit for viral replication, transcription and movement. In this study, the targeting of the NSV tospoviral genomic RNA and mRNA molecules by antiviral RNA-induced silencing complexes (RISC) was investigated, in vitro and in planta. RISC fractions isolated from tospovirus-infected N. benthamiana plants specifically cleaved naked, purified tospoviral genomic RNAs in vitro, but not genomic RNAs complexed with viral N protein. In planta RISC complexes, activated by a tobacco rattle virus (TRV) carrying tospovirus NSs or Gn gene fragments, mainly targeted the corresponding viral mRNAs and hardly genomic (viral and viral-complementary strands) RNA assembled into RNPs. In contrast, for the (+)ssRNA cucumber mosaic virus (CMV), RISC complexes, activated by TRV carrying CMV 2a or 2b gene fragments, targeted CMV genomic RNA. Altogether, the results indicated that antiviral RNAi primarily targets tospoviral mRNAs whilst their genomic RNA is well protected in RNPs against RISC-mediated cleavage. Considering the important role of RNPs in the replication cycle of all NSVs, the findings made in this study are likely applicable to all viruses belonging to this group.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Jeremiah Athmer ◽  
Anthony R. Fehr ◽  
Matthew E. Grunewald ◽  
Wen Qu ◽  
D. Lori Wheeler ◽  
...  

ABSTRACTSelective packaging is a mechanism used by multiple virus families to specifically incorporate genomic RNA (gRNA) into virions and exclude other types of RNA. Lineage A betacoronaviruses incorporate a 95-bp stem-loop structure, the packaging signal (PS), into the nsp15 locus of ORF1b that is both necessary and sufficient for the packaging of RNAs. However, unlike other viral PSs, where mutations generally resulted in viral replication defects, mutation of the coronavirus (CoV) PS results in large increases in subgenomic RNA packaging with minimal effects on gRNA packagingin vitroand on viral titers. Here, we show that selective packaging is also required for viral evasion of the innate immune response and optimal pathogenicity. We engineered two distinct PS mutants in two different strains of murine hepatitis virus (MHV) that packaged increased levels of subgenomic RNAs, negative-sense genomic RNA, and even cellular RNAs. All PS mutant viruses replicated normallyin vitrobut caused dramatically reduced lethality and weight lossin vivo. PS mutant virus infection of bone marrow-derived macrophages resulted in increased interferon (IFN) production, indicating that the innate immune system limited the replication and/or pathogenesis of PS mutant virusesin vivo. PS mutant viruses remained attenuated in MAVS−/−and Toll-like receptor 7-knockout (TLR7−/−) mice, two well-known RNA sensors for CoVs, but virulence was restored in interferon alpha/beta receptor-knockout (IFNAR−/−) mice or in MAVS−/−mice treated with IFNAR-blocking antibodies. Together, these data indicate that coronaviruses promote virulence by utilizing selective packaging to avoid innate immune detection.IMPORTANCECoronaviruses (CoVs) produce many types of RNA molecules during their replication cycle, including both positive- and negative-sense genomic and subgenomic RNAs. Despite this, coronaviruses selectively package only positive-sense genomic RNA into their virions. Why CoVs selectively package their genomic RNA is not clear, as disruption of the packaging signal in MHV, which leads to loss of selective packaging, does not affect genomic RNA packaging or virus replication in cultured cells. This contrasts with other viruses, where disruption of selective packaging generally leads to altered replication. Here, we demonstrate that in the absence of selective packaging, the virulence of MHV was significantly reduced. Importantly, virulence was restored in the absence of interferon signaling, indicating that selective packaging is a mechanism used by CoVs to escape innate immune detection.


2006 ◽  
Vol 80 (22) ◽  
pp. 11283-11292 ◽  
Author(s):  
M. A. Mir ◽  
B. Brown ◽  
B. Hjelle ◽  
W. A. Duran ◽  
A. T. Panganiban

ABSTRACT A key genomic characteristic that helps define Hantavirus as a genus of the family Bunyaviridae is the presence of distinctive terminal complementary nucleotides that promote the folding of the viral genomic segments into “panhandle” hairpin structures. The hantavirus nucleocapsid protein (N protein), which is encoded by the smallest of the three negative-sense genomic RNA segments, undergoes in vivo and in vitro trimerization. Trimeric hantavirus N protein specifically recognizes the panhandle structure formed by complementary base sequence of 5′ and 3′ ends of viral genomic RNA. N protein trimers from the Andes, Puumala, Prospect Hill, Seoul, and Sin Nombre viruses recognize their individual homologous panhandles as well as other hantavirus panhandles with high affinity. In contrast, these hantavirus N proteins bind with markedly reduced affinity to the panhandles from the genera Bunyavirus, Tospovirus, and Phlebovirus or Nairovirus. Interactions between most hantavirus N and heterologous hantavirus viral RNA panhandles are mediated by the nine terminal conserved nucleotides of the panhandle, whereas Sin Nombre virus N requires the first 23 nucleotides for high-affinity binding. Trimeric hantavirus N complexes undergo a prominent conformational change while interacting with panhandles from members of the genus Hantavirus but not while interacting with panhandles from viruses of other genera of the family Bunyaviridae. These data indicate that high-affinity interactions between trimeric N and hantavirus panhandles are conserved within the genus Hantavirus.


2018 ◽  
Vol 93 (1) ◽  
Author(s):  
Mahtab Peyambari ◽  
Sylvia Warner ◽  
Nicholas Stoler ◽  
Drew Rainer ◽  
Marilyn J. Roossinck

ABSTRACTOnly a few RNA viruses have been discovered from archaeological samples, the oldest dating from about 750 years ago. Using ancient maize cobs from Antelope house, Arizona, dating from ca. 1,000 CE, we discovered a novel plant virus with a double-stranded RNA genome. The virus is a member of the familyChrysoviridaethat infect plants and fungi in a persistent manner. The extracted double-stranded RNA from 312 maize cobs was converted to cDNA, and sequences were determined using an Illumina HiSeq 2000. Assembled contigs from many samples showed similarity toAnthuriummosaic-associated virus andPersea americanachrysovirus, putative species in theChrysovirusgenus, and nearly complete genomes were found in three ancient maize samples. We named this new virusZea mayschrysovirus 1. Using specific primers, we were able to recover sequences of a closely related virus from modern maize and obtained the nearly complete sequences of the three genomic RNAs. Comparing the nucleotide sequences of the three genomic RNAs of the modern and ancient viruses showed 98, 96.7, and 97.4% identities, respectively. Hence, in 1,000 years of maize cultivation, this virus has undergone about 3% divergence.IMPORTANCEA virus related to plant chrysoviruses was found in numerous ancient samples of maize, with nearly complete genomes in three samples. The age of the ancient samples (i.e., about 1,000 years old) was confirmed by carbon dating. Chrysoviruses are persistent plant viruses. They infect their hosts from generation to generation by transmission through seeds and can remain in their hosts for very long time periods. When modern corn samples were analyzed, a closely related chrysovirus was found with only about 3% divergence from the ancient sequences. This virus represents the oldest known plant virus.


2020 ◽  
Author(s):  
Autumn T. LaPointe ◽  
V. Douglas Landers ◽  
Claire E. Westcott ◽  
Kevin J. Sokoloski

ABSTRACTAlphaviruses are positive-sense RNA viruses that utilize a 5’ cap structure to facilitate translation of viral proteins and to protect the viral RNA genome. Nonetheless, significant quantities of viral genomic RNAs that lack a canonical 5’ cap structure are produced during alphaviral replication and packaged into viral particles. However, the role/impact of the noncapped genomic RNA (ncgRNA) during alphaviral infection in vivo has yet to be characterized. To determine the importance of the ncgRNA in vivo, the previously described D355A and N376A nsP1 mutations, which increase or decrease nsP1 capping activity respectively, were incorporated into the neurovirulent AR86 strain of Sindbis virus to enable characterization of the impact of altered capping efficiency in a murine model of infection. Mice infected with the N376A nsP1 mutant exhibited slightly decreased rates of mortality and delayed weight loss and neurological symptoms, although levels of inflammation in the brain were similar to wild type infection. The mice infected with the D355A nsP1 mutant showed significantly reduced mortality and morbidity compared to mice infected with wild type virus. Interestingly, both capping mutants had roughly equivalent viral titer in the brain compared to wild type virus, illustrating that the changes in mortality were not due to deficits in viral replication or dissemination. Examination of the brain tissue revealed that mice infected with the D355A capping mutant had significantly reduced cell death and immune cell infiltration compared to the N376A mutant and wild type virus. Finally, expression of proinflammatory cytokines was found to be significantly decreased in mice infected with the D355A mutant, suggesting that capping efficiency and the production of ncgRNA are vital to eliciting pathogenic levels of inflammation. Collectively, these data indicate that the ncgRNA have important roles during alphaviral infection and suggest a novel mechanism by which noncapped viral RNA aid in viral pathogenesis.AUTHOR SUMMARYMosquito transmitted alphaviruses have been the cause of widespread outbreaks of disease which can range from mild illness to lethal encephalitis or severe polyarthritis. In order to successfully replicate, the alphavirus RNA genome needs a 5’ cap structure so that the genome can be translated and produce the viral replication machinery. Despite this, a large number of viral genomes produced during infection do not have a 5’ cap structure, and their role during infection is unknown. Using mouse models of infection and point mutations in the nsP1 protein of Sindbis virus which alter the amount of noncapped genomic RNA (ncgRNA) produced, we found the decreasing the production of ncgRNA greatly reduced morbidity and mortality as well as proinflammatory cytokine expression, resulting in less tissue-damaging inflammation in the brain. These studies suggest that the ncgRNAs contribute to pathogenesis through the sensing of the ncgRNAs during alphaviral infection and are necessary for the development of severe disease.


1972 ◽  
Vol 71 (2_Suppla) ◽  
pp. S369-S380 ◽  
Author(s):  
Francis T. Kenney ◽  
Kai-Lin Lee ◽  
Charles D. Stiles

ABSTRACT Analyses of the response of hydrocortisone-induced tyrosine transaminase in cultured H-35 cells to inhibitors of translation (cycloheximide, puromycin) suggest: (1) that bound ribosomes stabilize messenger RNA in vivo; (2) that messenger is degraded at a rate determined by the rate of translation. Since specific messenger RNAs of mammalian cells are degraded at quite different rates, there may be extensive heterogeneity either in the rate at which ribosomes traverse different messengers or in the number of ribosomes which translate specific messenger RNAs.


2014 ◽  
Vol 1 (3) ◽  
pp. 3-7
Author(s):  
O. Zhukorskyy ◽  
O. Hulay

Aim. To estimate the impact of in vivo secretions of water plantain (Alisma plantago-aquatica) on the popula- tions of pathogenic bacteria Erysipelothrix rhusiopathiae. Methods. The plants were isolated from their natural conditions, the roots were washed from the substrate residues and cultivated in laboratory conditions for 10 days to heal the damage. Then the water was changed; seven days later the selected samples were sterilized using fi lters with 0.2 μm pore diameter. The dilution of water plantain root diffusates in the experimental samples was 1:10–1:10,000. The initial density of E. rhusiopathiae bacteria populations was the same for both experimental and control samples. The estimation of the results was conducted 48 hours later. Results. When the dilution of root diffusates was 1:10, the density of erysipelothrixes in the experimental samples was 11.26 times higher than that of the control, on average, the dilution of 1:100 − 6.16 times higher, 1:1000 – 3.22 times higher, 1:10,000 – 1.81 times higher, respectively. Conclusions. The plants of A. plantago-aquatica species are capable of affecting the populations of E. rhusiopathiae pathogenic bacteria via the secretion of biologically active substances into the environment. The consequences of this interaction are positive for the abovementioned bacteria, which is demon- strated by the increase in the density of their populations in the experiment compared to the control. The intensity of the stimulating effect on the populations of E. rhusiopathiae in the root diffusates of A. plantago-aquatica is re- ciprocally dependent on the degree of their dilution. The investigated impact of water plantain on erysipelothrixes should be related to the topical type of biocenotic connections, the formation of which between the test species in the ecosystems might promote maintaining the potential of natural focus of rabies. Keywords: Alisma plantago-aquatica, in vivo secretions, Erysipelothrix rhusiopathiae, population density, topical type of connections.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


Sign in / Sign up

Export Citation Format

Share Document