scholarly journals Fucoidan But Not 2′-Fucosyllactose Inhibits Human Norovirus Replication in Zebrafish Larvae

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 461
Author(s):  
Malcolm Turk Hsern Tan ◽  
Yan Li ◽  
Mohamad Eshaghi Gorji ◽  
Zhiyuan Gong ◽  
Dan Li

Human noroviruses (hNoVs) cause heavy disease burden worldwide and there is no clinically approved vaccination or antiviral hitherto. In this study, with the use of a zebrafish larva in vivo platform, we investigated the anti-hNoV potentials of fucoidan (from brown algae Fucus vesiculosus) and 2′-Fucosyllactose (2′-FL). As a result, although both fucoidan and 2′-FL were able to block hNoV GII.4 virus-like particle (VLPs) from binding to type A saliva as expected, only fucoidan, but not 2′-FL, was able to inhibit the replication of hNoV GII.P16-GII.4 in zebrafish larvae, indicating the possible needs of higher molecular weights for fucosylated carbohydrates to exert anti-hNoV effect.

2020 ◽  
Author(s):  
Malcolm Turk Hsern Tan ◽  
Yan Li ◽  
Mohamad Eshaghi Gorji ◽  
Zhiyuan Gong ◽  
Dan Li

AbstractHuman noroviruses (hNoVs) cause heavy disease burden worldwide and there is no clinically approved vaccination or antivirals hitherto. In this study, with the use of a zebrafish larvae in vivo platform, we investigated the anti-hNoV potentials of fucoidan and 2’-Fucosyllactose (2’-FL). As a result, although both fucoidan and 2-’FL were able to block hNoV GII.4 virus-like particle (VLPs) from binding to type A saliva as expected, only fucoidan but not 2-’FL was able to inhibit the replication of hNoV GII.P16-GII.4 in zebrafish larvae, indicating the possible needs of higher molecular weights for fucosylated carbohydrates to exert anti-hNoV effect.


2021 ◽  
Author(s):  
Jana Van Dycke ◽  
Arno Cuvry ◽  
Jan Knickmann ◽  
Annelii Ny ◽  
Sebastian Rakers ◽  
...  

Author(s):  
D.R. Jackson ◽  
J.H. Hoofnagle ◽  
A.N. Schulman ◽  
J.L. Dienstag ◽  
R.H. Purcell ◽  
...  

Using immune electron microscopy Feinstone et. al. demonstrated the presence of a 27 nm virus-like particle in acute-phase stools of patients with viral hepatitis, type A, These hepatitis A antigen (HA Ag) particles were aggregated by convalescent serum from patients with type A hepatitis but not by pre-infection serum. Subsequently Dienstag et. al. and Maynard et. al. produced acute hepatitis in chimpanzees by inoculation with human stool containing HA Ag. During the early acute disease, virus like particles antigenically, morphologically and biophysically identical to the human HA Ag particle were found in chimpanzee stool. Recently Hilleman et. al. have described similar particles in liver and serum of marmosets infected with hepatitis A virus (HAV). We have investigated liver, bile and stool from chimpanzees and marmosets experimentally infected with HAV. In an initial study, a chimpanzee (no.785) inoculated with HA Ag-containing stool developed elevated liver enzymes 21 days after exposure.


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


1964 ◽  
Vol 12 (01) ◽  
pp. 232-261 ◽  
Author(s):  
S Sasaki ◽  
T Takemoto ◽  
S Oka

SummaryTo demonstrate whether the intravascular precipitation of fibrinogen is responsible for the toxicity of heparinoid, the relation between the toxicity of heparinoid in vivo and the precipitation of fibrinogen in vitro was investigated, using dextran sulfate of various molecular weights and various heparinoids.1. There are close relationships between the molecular weight of dextran sulfate, its toxicity, and the quantity of fibrinogen precipitated.2. The close relationship between the toxicity and the precipitation of fibrinogen found for dextran sulfate holds good for other heparinoids regardless of their molecular structures.3. Histological findings suggest strongly that the pathological changes produced with dextran sulfate are caused primarily by the intravascular precipitates with occlusion of the capillaries.From these facts, it is concluded that the precipitates of fibrinogen with heparinoid may be the cause or at least the major cause of the toxicity of heparinoid.4. The most suitable molecular weight of dextran sulfate for clinical use was found to be 5,300 ~ 6,700, from the maximum value of the product (LD50 · Anticoagulant activity). This product (LD50 · Anticoagulant activity) can be employed generally to assess the comparative merits of various heparinoids.5. Clinical use of the dextran sulfate prepared on this basis gave satisfactory results. No severe reaction was observed. However, two delayed reactions, alopecia and thrombocytopenia, were observed. These two reactions seem to come from the cause other than intravascular precipitation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Merricka C. Livingstone ◽  
Alexis A. Bitzer ◽  
Alish Giri ◽  
Kun Luo ◽  
Rajeshwer S. Sankhala ◽  
...  

AbstractPlasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.


Author(s):  
Marwa E. Atya ◽  
Amr El-Hawiet ◽  
Mohamed A. Alyeldeen ◽  
Doaa A. Ghareeb ◽  
Mohamed M. Abdel-Daim ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1027
Author(s):  
Vincenzo De Leo ◽  
Francesco Milano ◽  
Angela Agostiano ◽  
Lucia Catucci

Liposomes are consolidated and attractive biomimetic nanocarriers widely used in the field of drug delivery. The structural versatility of liposomes has been exploited for the development of various carriers for the topical or systemic delivery of drugs and bioactive molecules, with the possibility of increasing their bioavailability and stability, and modulating and directing their release, while limiting the side effects at the same time. Nevertheless, first-generation vesicles suffer from some limitations including physical instability, short in vivo circulation lifetime, reduced payload, uncontrolled release properties, and low targeting abilities. Therefore, liposome preparation technology soon took advantage of the possibility of improving vesicle performance using both natural and synthetic polymers. Polymers can easily be synthesized in a controlled manner over a wide range of molecular weights and in a low dispersity range. Their properties are widely tunable and therefore allow the low chemical versatility typical of lipids to be overcome. Moreover, depending on their structure, polymers can be used to create a simple covering on the liposome surface or to intercalate in the phospholipid bilayer to give rise to real hybrid structures. This review illustrates the main strategies implemented in the field of polymer/liposome assembly for drug delivery, with a look at the most recent publications without neglecting basic concepts for a simple and complete understanding by the reader.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Imam Uddin ◽  
Tyler C. Kilburn ◽  
Sara Z. Jamal ◽  
Craig L. Duvall ◽  
John S. Penn

AbstractDiabetic retinopathy, retinopathy of prematurity and retinal vein occlusion are potentially blinding conditions largely due to their respective neovascular components. The development of real-time in vivo molecular imaging methods, to assess levels of retinal neovascularization (NV), would greatly benefit patients afflicted with these conditions. mRNA hybridization techniques offer a potential method to image retinal NV. The success of these techniques hinges on the selection of a target mRNA whose tissue levels and spatial expression patterns correlate closely with disease burden. Using a model of oxygen-induced retinopathy (OIR), we previously observed dramatic increases in retinal endoglin that localized to neovascular structures (NV), directly correlating with levels of neovascular pathology. Based on these findings, we have investigated Endoglin mRNA as a potential marker for imaging retinal NV in OIR mice. Also of critical importance, is the application of innovative technologies capable of detecting mRNAs in living systems with high sensitivity and specificity. To detect and visualize endoglin mRNA in OIR mice, we have designed and synthesized a novel imaging probe composed of short-hairpin anti-sense (AS) endoglin RNA coupled to a fluorophore and black hole quencher (AS-Eng shRNA). This assembly allows highly sensitive fluorescence emission upon hybridization of the AS-Eng shRNA to cellular endoglin mRNA. The AS-Eng shRNA is further conjugated to a diacyl-lipid (AS-Eng shRNA–lipid referred to as probe). The lipid moiety binds to serum albumin facilitating enhanced systemic circulation of the probe. OIR mice received intraperitoneal injections of AS-Eng shRNA–lipid. Ex vivo imaging of their retinas revealed specific endoglin mRNA dependent fluorescence superimposed on neovascular structures. Room air mice receiving AS-Eng shRNA–lipid and OIR mice receiving a non-sense control probe showed little fluorescence activity. In addition, we found that cells in neovascular lesions labelled with endoglin mRNA dependent fluorescence, co-labelled with the macrophage/microglia-associated marker IBA1. Others have shown that cells expressing macrophage/microglia markers associate with retinal neovascular structures in proportion to disease burden. Hence we propose that our probe may be used to image and to estimate the levels of retinal neovascular disease in real-time in living systems.


Sign in / Sign up

Export Citation Format

Share Document