scholarly journals RNA Origami: Packaging a Segmented Genome in Orbivirus Assembly and Replication

Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1841
Author(s):  
Po-Yu Sung ◽  
Polly Roy

Understanding how viruses with multi-segmented genomes incorporate one copy of each segment into their capsids remains an intriguing question. Here, we review our recent progress and describe the advancements made in understanding the genome packaging mechanism of a model nonenveloped virus, Bluetongue virus (BTV), with a 10-segment (S1–S10) double-strand RNA (dsRNA) genome. BTV (multiple serotypes), a member of the Orbivirus genus in the Reoviridae family, is a notable pathogen for livestock and is responsible for significant economic losses worldwide. This has enabled the creation of an extensive set of reagents and assays, including reverse genetics, cell-free RNA packaging, and bespoke bioinformatics approaches, which can be directed to address the packaging question. Our studies have shown that (i) UTRs enable the conformation of each segment necessary for the next level of RNA–RNA interaction; (ii) a specific order of intersegment interactions leads to a complex RNA network containing all the active components in sorting and packaging; (iii) networked segments are recruited into nascent assembling capsids; and (iv) select capsid proteins might be involved in the packaging process. The key features of genome packaging mechanisms for BTV and related dsRNA viruses are novel and open up new avenues of potential intervention.

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2166
Author(s):  
Hiroho Ishida ◽  
Shin Murakami ◽  
Haruhiko Kamiki ◽  
Hiromichi Matsugo ◽  
Misa Katayama ◽  
...  

Influenza D virus (IDV) may cause the bovine respiratory disease complex, which is the most common and costly disease affecting the cattle industry. Previously, we revealed that eight segments could be actively packaged in its single virion, suggesting that IDV with the seven-segmented genome shows an agnostic genome packaging mechanism. Herein, we engineered an eight-segmented recombinant IDV in which the NS1 or NS2 genes were separated from NS segment into independent segments (NS1 or NS2 segments, respectively), leading to monocistronic translation of each NS protein. We constructed two plasmids: one for the viral RNA (vRNA)-synthesis of the NS1 segment with a silent mutation at the splicing acceptor site, which controls NS2 transcription in the NS segment; and another for the RNA synthesis of the NS2 segment, with deletion of the intron in the NS segment. These plasmids and six other vRNA-synthesis plasmids were used to fabricate an infectious eight-segmented IDV via reverse genetics. This system enables analysis of the functions of NS1 or NS2. We tested the requirement of the N-terminal overlapping region (NOR) in these proteins for viral infectivity. We rescued a virus with NOR-deleted NS2 protein, which displayed a growth rate equivalent to that of the eight-segmented virus with intact NS2. Thus, the NOR may not influence viral growth. In contrast, a virus with NOR-deleted NS1 protein could not be rescued. These results indicate that the eight-segmented rescue system of IDV may provide an alternative method to analyze viral proteins at the molecular level.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1096
Author(s):  
Timothy W. Thoner ◽  
Xiang Ye ◽  
John Karijolich ◽  
Kristen M. Ogden

Packaging of segmented, double-stranded RNA viral genomes requires coordination of viral proteins and RNA segments. For mammalian orthoreovirus (reovirus), evidence suggests either all ten or zero viral RNA segments are simultaneously packaged in a highly coordinated process hypothesized to exclude host RNA. Accordingly, reovirus generates genome-containing virions and “genomeless” top component particles. Whether reovirus virions or top component particles package host RNA is unknown. To gain insight into reovirus packaging potential and mechanisms, we employed next-generation RNA-sequencing to define the RNA content of enriched reovirus particles. Reovirus virions exclusively packaged viral double-stranded RNA. In contrast, reovirus top component particles contained similar proportions but reduced amounts of viral double-stranded RNA and were selectively enriched for numerous host RNA species, especially short, non-polyadenylated transcripts. Host RNA selection was not dependent on RNA abundance in the cell, and specifically enriched host RNAs varied for two reovirus strains and were not selected solely by the viral RNA polymerase. Collectively, these findings indicate that genome packaging into reovirus virions is exquisitely selective, while incorporation of host RNAs into top component particles is differentially selective and may contribute to or result from inefficient viral RNA packaging.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 435
Author(s):  
Makoto Ujike ◽  
Fumihiro Taguchi

Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although it belonged to the Coronavirus (CoV) family historically. ToVs are associated with enteric diseases in animals and humans. In contrast to CoVs, which are recognised as pathogens of veterinary and medical importance, little attention has been paid to ToVs because their infections are usually asymptomatic or not severe; for a long time, only one equine ToV could be propagated in cultured cells. However, bovine ToVs, which predominantly cause diarrhoea in calves, have been detected worldwide, leading to economic losses. Porcine ToVs have also spread globally; although they have not caused serious economic losses, coinfections with other pathogens can exacerbate their symptoms. In addition, frequent inter- or intra-recombination among ToVs can increase pathogenesis or unpredicted host adaptation. These findings have highlighted the importance of ToVs as pathogens and the need for basic ToV research. Here, we review recent progress in the study of ToV molecular biology including reverse genetics, focusing on the similarities and differences between ToVs and CoVs.


Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 480
Author(s):  
Honglei Wang ◽  
Yangyang Xu ◽  
Wenhai Feng

Porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus widely prevalent in pigs, results in significant economic losses worldwide. PRRSV can escape from the host immune response in several processes. Vaccines, including modified live vaccines and inactivated vaccines, are the best available countermeasures against PRRSV infection. However, challenges still exist as the vaccines are not able to induce broad protection. The reason lies in several facts, mainly the variability of PRRSV and the complexity of the interaction between PRRSV and host immune responses, and overcoming these obstacles will require more exploration. Many novel strategies have been proposed to construct more effective vaccines against this evolving and smart virus. In this review, we will describe the mechanisms of how PRRSV induces weak and delayed immune responses, the current vaccines of PRRSV, and the strategies to develop modified live vaccines using reverse genetics systems.


2007 ◽  
Vol 82 (5) ◽  
pp. 2305-2312 ◽  
Author(s):  
Li Lin ◽  
Jianming Hu

ABSTRACT The hepatitis B virus (HBV) reverse transcriptase (RT) plays a multitude of fundamental roles in the viral life cycle and is the key target in the development of anti-HBV chemotherapy. We report here that the endogenous small molecule iron protoporphyrin IX (hemin) and several related porphyrin compounds potently blocked a critical RT interaction with the viral RNA packaging signal/origin of replication, called ε. As RT-ε interaction is essential for the initiation of viral reverse transcription, which is primed by RT itself (protein priming), the porphyrin compounds dramatically suppressed the protein-priming reaction. Further studies demonstrated that these compounds could target the unique N-terminal domain of the RT protein, the so-called terminal protein. Hemin and related porphyrin compounds thus represent a novel class of agents that can block HBV RT functions through a mechanism and target that are completely distinct from those of existing anti-HBV drugs.


2002 ◽  
Vol 76 (3) ◽  
pp. 959-967 ◽  
Author(s):  
Jun-ichi Sakuragi ◽  
Aikichi Iwamoto ◽  
Tatsuo Shioda

ABSTRACT The dimer initiation site/dimer linkage sequence (DIS/DLS) region of the human immunodeficiency virus type 1 (HIV-1) RNA genome is thought to play important roles at various stages of the virus life cycle. Recently we showed that the DIS/DLS region affects RNA-RNA interaction in intact virus particles, by demonstrating that duplication of the region in viral RNA caused the production of virus particles containing partially monomeric RNAs. We have extended this finding and succeeded for the first time in creating mutant particles which contain only monomeric RNAs without modifying any viral proteins. In terms of RNA encapsidation ability, virion density, and protein processing, the mutant particles were comparable to wild-type particles. The level of production of viral DNA by the mutant virus construct in infected cells was also comparable to that of the constructs that produced exclusively dimeric RNA, indicating that monomeric viral RNA could be the template for strand transfer. These results indicated that the RNA dimerization of HIV-1 could be separated from viral RNA packaging and was not absolutely required for RNA packaging, virion maturation, and reverse transcription.


Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 145
Author(s):  
Deep Prakash Saikia ◽  
Kalpana Yadav ◽  
Dinesh C. Pathak ◽  
Narayan Ramamurthy ◽  
Ajai Lawrence D’Silva ◽  
...  

Newcastle disease (ND) and avian reovirus (ARV) infections are a serious threat to the poultry industry, which causes heavy economic losses. The mesogenic NDV strain R2B is commonly used as a booster vaccine in many Asian countries to control the disease. In this seminal work, a recombinant NDV strain R2B expressing the sigma C (σC) gene of ARV (rNDV-R2B-σC) was generated by reverse genetics, characterized in vitro and tested as a bivalent vaccine candidate in chickens. The recombinant rNDV-R2B-σC virus was attenuated as compared to the parent rNDV-R2B virus as revealed by standard pathogenicity assays. The generated vaccine candidate, rNDV-R2B-σC, could induce both humoral and cell mediated immune responses in birds and gave complete protection against virulent NDV and ARV challenges. Post-challenge virus shedding analysis revealed a drastic reduction in NDV shed, as compared to unvaccinated birds.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 301
Author(s):  
Bingyu Yan ◽  
Xiaohui Zou ◽  
Xinglong Liu ◽  
Jiaming Zhao ◽  
Wenfeng Zhang ◽  
...  

A novel fowl adenovirus 4 (FAdV-4) has caused significant economic losses to the poultry industry in China since 2015. We established an easy-to-use reverse genetics system for modification of the whole right and partial left ends of the novel FAdV-4 genome, which worked through cell-free reactions of restriction digestion and Gibson assembly. Three recombinant viruses were constructed to test the assumption that species-specific viral genes of ORF4 and ORF19A might be responsible for the enhanced virulence: viral genes of ORF1, ORF1b and ORF2 were replaced with GFP to generate FAdV4-GFP, ORF4 was replaced with mCherry in FAdV4-GFP to generate FAdV4-GX4C, and ORF19A was deleted in FAdV4-GFP to generate FAdV4-CX19A. Deletion of ORF4 made FAdV4-GX4C form smaller plaques while ORF19A deletion made FAdV4-CX19A form larger ones on chicken LMH cells. Coding sequence (CDS) replacement with reporter mCherry demonstrated that ORF4 had a weak promoter. Survival analysis showed that FAdV4-CX19A-infected chicken embryos survived one more day than FAdV4-GFP- or FAdV4-GX4C-infected ones. The results illustrated that ORF4 and ORF19A were non-essential genes for FAdV-4 replication although deletion of either gene influenced virus growth. This work would help function study of genes on the right end of FAdV-4 genome and facilitate development of attenuated vaccines.


2006 ◽  
Vol 80 (12) ◽  
pp. 5790-5797 ◽  
Author(s):  
Dhanasekaran Govindarajan ◽  
Ursula J. Buchholz ◽  
Siba K. Samal

ABSTRACT Avian metapneumovirus (AMPV) causes an acute respiratory disease in turkeys and is associated with “swollen head syndrome” in chickens, contributing to significant economic losses for the U.S. poultry industry. With a long-term goal of developing a better vaccine for controlling AMPV in the United States, we established a reverse genetics system to produce infectious AMPV of subgroup C entirely from cDNA. A cDNA clone encoding the entire 14,150-nucleotide genome of AMPV subgroup C strain Colorado (AMPV/CO) was generated by assembling five cDNA fragments between the T7 RNA polymerase promoter and the autocatalytic hepatitis delta virus ribozyme of a transcription plasmid, pBR 322. Transfection of this plasmid, along with the expression plasmids encoding the N, P, M2-1, and L proteins of AMPV/CO, into cells stably expressing T7 RNA polymerase resulted in the recovery of infectious AMPV/CO. Characterization of the recombinant AMPV/CO showed that its growth properties in tissue culture were similar to those of the parental virus. The potential of AMPV/CO to serve as a viral vector was also assessed by generating another recombinant virus, rAMPV/CO-GFP, that expressed the enhanced green fluorescent protein (GFP) as a foreign protein. Interestingly, GFP-expressing AMPV and GFP-expressing human metapneumovirus (HMPV) could be recovered using the support plasmids of either virus, denoting that the genome promoters are conserved between the two metapneumoviruses and can be cross-recognized by the polymerase complex proteins of either virus. These results indicate a close functional relationship between AMPV/CO and HMPV.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1788
Author(s):  
Liqing Ye ◽  
Uddhav B. Ambi ◽  
Marco Olguin-Nava ◽  
Anne-Sophie Gribling-Burrer ◽  
Shazeb Ahmad ◽  
...  

To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.


Sign in / Sign up

Export Citation Format

Share Document