scholarly journals Whole Genome Analysis of Human Rotaviruses Reveals Single Gene Reassortant Rotavirus Strains in Zambia

Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1872
Author(s):  
Wairimu M. Maringa ◽  
Julia Simwaka ◽  
Peter N. Mwangi ◽  
Evans M. Mpabalwani ◽  
Jason M. Mwenda ◽  
...  

Rotarix® vaccine was implemented nationwide in Zambia in 2013. In this study, four unusual strains collected in the post-vaccine period were subjected to whole genome sequencing and analysis. The four strains possessed atypical genotype constellations, with at least one reassortant genome segment within the constellation. One of the strains (UFS-NGS-MRC-DPRU4749) was genetically and phylogenetically distinct in the VP4 and VP1 gene segments. Pairwise analyses demonstrated several amino acid disparities in the VP4 antigenic sites of this strain compared to that of Rotarix®. Although the impact of these amino acid disparities remains to be determined, this study adds to our understanding of the whole genomes of reassortant strains circulating in Zambia following Rotarix® vaccine introduction.

Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Sebotsana Rasebotsa ◽  
Jeannine Uwimana ◽  
Milton T. Mogotsi ◽  
Kebareng Rakau ◽  
Nonkululeko B. Magagula ◽  
...  

Children in low-and middle-income countries, including Rwanda, experience a greater burden of rotavirus disease relative to developed countries. Evolutionary mechanisms leading to multiple reassortant rotavirus strains have been documented over time which influence the diversity and evolutionary dynamics of novel rotaviruses. Comprehensive rotavirus whole-genome analysis was conducted on 158 rotavirus group A (RVA) samples collected pre- and post-vaccine introduction in children less than five years in Rwanda. Of these RVA positive samples, five strains with the genotype constellations G4P[4]-I1-R2-C2-M2-A2-N2-T1-E1-H2 (n = 1), G9P[4]-I1-R2-C2-M2-A1-N1-T1-E1-H1 (n = 1), G12P[8]-I1-R2-C2-M1-A1-N2-T1-E2-H3 (n = 2) and G12P[8]-I1-R1-C1-M1-A2-N2-T2-E1-H1 (n = 1), with double and triple gene reassortant rotavirus strains were identified. Phylogenetic analysis revealed a close relationship between the Rwandan strains and cognate human RVA strains as well as the RotaTeq® vaccine strains in the VP1, VP2, NSP2, NSP4 and NSP5 gene segments. Pairwise analyses revealed multiple differences in amino acid residues of the VP7 and VP4 antigenic regions of the RotaTeq® vaccine strain and representative Rwandan study strains. Although the impact of such amino acid changes on the effectiveness of rotavirus vaccines has not been fully explored, this analysis underlines the potential of rotavirus whole-genome analysis by enhancing knowledge and understanding of intergenogroup reassortant strains circulating in Rwanda post vaccine introduction.


2014 ◽  
Vol 95 (5) ◽  
pp. 1104-1116 ◽  
Author(s):  
Amin S. Asfor ◽  
Sasmita Upadhyaya ◽  
Nick J. Knowles ◽  
Donald P. King ◽  
David J. Paton ◽  
...  

Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17 Å away from VP2-72), located at the threefold axis and more distant from previously identified antigenic sites, exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design.


2006 ◽  
Vol 23 (9) ◽  
pp. 1670-1680 ◽  
Author(s):  
Esley M. Heizer ◽  
Douglas W. Raiford ◽  
Michael L. Raymer ◽  
Travis E. Doom ◽  
Robert V. Miller ◽  
...  

2013 ◽  
Vol 94 (1) ◽  
pp. 128-135 ◽  
Author(s):  
Junichi Soma ◽  
Hiroshi Tsunemitsu ◽  
Takeshi Miyamoto ◽  
Goro Suzuki ◽  
Takashi Sasaki ◽  
...  

Rotavirus C (RVC) has been detected frequently in epidemic cases and/or outbreaks of diarrhoea in humans and animals worldwide. Because it is difficult to cultivate RVCs serially in cell culture, the sequence data available for RVCs are limited, despite their potential economical and epidemiological impact. Although whole-genome sequences of one porcine RVC and seven human RVC strains have been analysed, this has not yet been done for a bovine RVC strain. In the present study, we first determined the nucleotide sequences for five as-yet underresearched genes, including the NSP4 gene, from a cultivable bovine RVC, the Shintoku strain, identified in Hokkaido Prefecture, Japan, in 1991. In addition, we elucidated the ORF sequences of all segments from another bovine RVC, the Toyama strain, detected in Toyama Prefecture, Japan, in 2010, in order to investigate genetic divergence among bovine RVCs. Comparison of segmental nucleotide and deduced amino acid sequences among RVCs indicates high identity among bovine RVCs and low identity between human and porcine RVCs. Phylogenetic analysis of each gene showed that the two bovine RVCs belong to a cluster distinct from human and porcine RVCs. These data demonstrate that RVCs can be classified into different genotypes according to host species. Moreover, RVC NSP1, NSP2 and VP1 amino acid sequences contain a unique motif that is highly conserved among rotavirus A (RVA) strains and, hence, several proteins from bovine RVCs are suggested to play important roles that are similar to those of RVAs.


2019 ◽  
Vol 26 (1) ◽  
pp. 36
Author(s):  
Luciano Antonio Digiampietri ◽  
Vivian Mayumi Yamassaki Pereira ◽  
Geraldo José Santos-Júnior ◽  
Giovani Sousa-Leite ◽  
Priscilla Koch Wagner ◽  
...  

Most of the computational biology analysis is made comparing genomic features. The nucleotide and amino acid sequence alignments are frequently used in gene function identification and genome comparison. Despite its widespread use, there are limitations in their analysis capabilities that need to be considered but are often overlooked or unknown by many researchers. This paper presents a gene based whole genome comparison toolkit which can be used not only as an alternative and more robust way to compare a set of whole genomes, but, also, to understand the tradeoff of the use of sequence local alignment in this kind of comparison. A study case was performed considering fifteen whole genomes of the Xanthomonas genus. The results were compared with the 16S rRNA-processing protein RimM phylogeny and some thresholds for the use of sequence alignments in this kind of analysis were discussed.


2019 ◽  
Author(s):  
Chiheb Boudhrioua ◽  
Maxime Bastien ◽  
Davoud Torkamaneh ◽  
François Belzile

Abstract Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum (Lib.) de Bary, is an important cause of yield loss in soybean. Although many papers have reported different loci contributing to partial resistance, few of these were proved to reproduce the same phenotypic impact in different populations. In this study, we identified a major quantitative trait loci (QTL) associated with resistance to SSR progression on the main stem by using a genome-wide association mapping (GWAM). A population of 127 soybean accessions was genotyped with 1.5M SNPs derived from genotyping-by-sequencing (GBS) and whole-genome sequencing (WGS) ensuring an extensive genome coverage and phenotyped for SSR resistance. SNP-trait association led to discovery of a new QTL on chromosome 1 (Chr01) where resistant lines had shorter lesions on the stem by 29 mm . A single gene (Glyma.01g048000) resided in the same LD block as the peak SNP, but it is of unknown function. The impact of this QTL was even more significant in the descendants of a cross between two lines carrying contrasted alleles for Chr01. Individuals carrying the resistance allele developed lesions almost 50% shorter than those bearing the sensitivity allele. These results suggest that this region harbors a promising resistance QTL to SSR that can be used in soybean breeding program.


2006 ◽  
Vol 5 (2) ◽  
pp. 272-276 ◽  
Author(s):  
Samuel H. Payne ◽  
William F. Loomis

ABSTRACT Plants and fungi can synthesize each of the 20 amino acids by using biosynthetic pathways inherited from their bacterial ancestors. However, the ability to synthesize nine amino acids (Phe, Trp, Ile, Leu, Val, Lys, His, Thr, and Met) was lost in a wide variety of eukaryotes that evolved the ability to feed on other organisms. Since the biosynthetic pathways and their respective enzymes are well characterized, orthologs can be recognized in whole genomes to understand when in evolution pathways were lost. The pattern of pathway loss and retention was analyzed in the complete genomes of three early-diverging protist parasites, the amoeba Dictyostelium, and six animals. The nine pathways were lost independently in animals, Dictyostelium, Leishmania, Plasmodium, and Cryptosporidium. Seven additional pathways appear to have been lost in one or another parasite, demonstrating that they are dispensable in a nutrition-rich environment. Our predictions of pathways retained and pathways lost based on computational analyses of whole genomes are validated by minimal-medium studies with mammals, fish, worms, and Dictyostelium. The apparent selective advantages of retaining biosynthetic capabilities for amino acids available in the diet are considered.


2021 ◽  
Vol 37 (4) ◽  
pp. 351-363
Author(s):  
Le Sy Vinh

Modeling amino acid substitution process is a core task in bioinformatics. New advanced sequencing technologies have generated huge datasets including whole genomes from various species. Estimating amino acid substitution models from whole genome datasets provides us unprecedented opportunities to accurately investigate relationships among species. In this paper, we review state-of-the-art computational methods to estimate amino acid substitution models from large datasets. We also describe a comprehensive pipeline to practically estimate amino acid models from whole genome datasets. Finally, we apply amino acid substitution models to build phylogenomic trees from bird and plant genome datasets. We compare our newly reconstructed phylogenomic trees and published ones and discuss new findings.


Author(s):  
Jiao-Mei Huang ◽  
Syed Sajid Jan ◽  
Xiaobin Wei ◽  
Yi Wan ◽  
Songying Ouyang

SUMMARYThe recent global outbreak of viral pneumonia designated as Coronavirus Disease 2019 (COVID-19) by coronavirus (SARS-CoV-2) has threatened global public health and urged to investigate its source. Whole genome analysis of SARS-CoV-2 revealed ~96% genomic similarity with bat CoV (RaTG13) and clustered together in phylogenetic tree. Furthermore, RaTGl3 also showed 97.43% spike protein similarity with SARS-CoV-2 suggesting that RaTGl3 is the closest strain. However, RBD and key amino acid residues supposed to be crucial for human-to-human and cross-species transmission are homologues between SARS-CoV-2 and pangolin CoVs. These results from our analysis suggest that SARS-CoV-2 is a recombinant virus of bat and pangolin CoVs. Moreover, this study also reports mutations in coding regions of 125 SARS-CoV-2 genomes signifying its aptitude for evolution. In short, our findings propose that homologous recombination has been occurred between bat and pangolin CoVs that triggered cross-species transmission and emergence of SARS-CoV-2, and, during the ongoing outbreak, SARS-CoV-2 is still evolving for its adaptability.


Sign in / Sign up

Export Citation Format

Share Document