scholarly journals Evidence of the Recombinant Origin and Ongoing Mutations in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)

Author(s):  
Jiao-Mei Huang ◽  
Syed Sajid Jan ◽  
Xiaobin Wei ◽  
Yi Wan ◽  
Songying Ouyang

SUMMARYThe recent global outbreak of viral pneumonia designated as Coronavirus Disease 2019 (COVID-19) by coronavirus (SARS-CoV-2) has threatened global public health and urged to investigate its source. Whole genome analysis of SARS-CoV-2 revealed ~96% genomic similarity with bat CoV (RaTG13) and clustered together in phylogenetic tree. Furthermore, RaTGl3 also showed 97.43% spike protein similarity with SARS-CoV-2 suggesting that RaTGl3 is the closest strain. However, RBD and key amino acid residues supposed to be crucial for human-to-human and cross-species transmission are homologues between SARS-CoV-2 and pangolin CoVs. These results from our analysis suggest that SARS-CoV-2 is a recombinant virus of bat and pangolin CoVs. Moreover, this study also reports mutations in coding regions of 125 SARS-CoV-2 genomes signifying its aptitude for evolution. In short, our findings propose that homologous recombination has been occurred between bat and pangolin CoVs that triggered cross-species transmission and emergence of SARS-CoV-2, and, during the ongoing outbreak, SARS-CoV-2 is still evolving for its adaptability.

2020 ◽  
Vol 11 ◽  
Author(s):  
Rongxin Zhang ◽  
Ke Xiao ◽  
Yu Gu ◽  
Hongde Liu ◽  
Xiao Sun

The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has become a global public health emergency. G-quadruplex, one of the non-canonical secondary structures, has shown potential antiviral values. However, little is known about the G-quadruplexes of the emerging SARS-CoV-2. Herein, we characterized the potential G-quadruplexes in both positive and negative-sense viral strands. The identified potential G-quadruplexes exhibited similar features to the G-quadruplexes detected in the human transcriptome. Within some bat- and pangolin-related betacoronaviruses, the G-tracts rather than the loops were under heightened selective constraints. We also found that the amino acid sequence similar to SUD (SARS-unique domain) was retained in SARS-CoV-2 but depleted in some other coronaviruses that can infect humans. Further analysis revealed that the amino acid residues related to the binding affinity of G-quadruplexes were conserved among 16,466 SARS-CoV-2 samples. Moreover, the dimer of the SUD-homology structure in SARS-CoV-2 displayed similar electrostatic potential patterns to the SUD dimer from SARS. Considering the potential value of G-quadruplexes to serve as targets in antiviral strategy, our fundamental research could provide new insights for the SARS-CoV-2 drug discovery.


1994 ◽  
Vol 299 (2) ◽  
pp. 545-552 ◽  
Author(s):  
Y Deyashiki ◽  
A Ogasawara ◽  
T Nakayama ◽  
M Nakanishi ◽  
Y Miyabe ◽  
...  

Human liver contains two dihydrodiol dehydrogenases, DD2 and DD4, associated with 3 alpha-hydroxysteroid dehydrogenase activity. We have raised polyclonal antibodies that cross-reacted with the two enzymes and isolated two 1.2 kb cDNA clones (C9 and C11) for the two enzymes from a human liver cDNA library using the antibodies. The clones of C9 and C11 contained coding sequences corresponding to 306 and 321 amino acid residues respectively, but lacked 5′-coding regions around the initiation codon. Sequence analyses of several peptides obtained by enzymic and chemical cleavages of the two purified enzymes verified that the C9 and C11 clones encoded DD2 and DD4 respectively, and further indicated that the sequence of DD2 had at least additional 16 residues upward from the N-terminal sequence deduced from the cDNA. There was 82% amino acid sequence identity between the two enzymes, indicating that the enzymes are genetic isoenzymes. A computer-based comparison of the cDNAs of the isoenzymes with the DNA sequence database revealed that the nucleotide and amino acid sequences of DD2 and DD4 are virtually identical with those of human bile-acid binder and human chlordecone reductase cDNAs respectively.


Author(s):  
Huichao Wang ◽  
Tong Zhao ◽  
Shuhui Yang ◽  
Liang Zou ◽  
Xiaolong Wang ◽  
...  

Abstract Under the severe situation of the current global epidemic, researchers have been working hard to find a reliable way to suppress the infection of the virus and prevent the spread of the epidemic. Studies have shown that the recognition and binding of human angiotensin-converting enzyme 2 (ACE2) by the receptor-binding domain (BRD) of spike protein on the surface of SARS-CoV-2 is a crucial step for SARS-CoV-2 to invade human receptor cells, and blocking this process can inhibit the virus from invading human normal cells. Plasma treatment can disrupt the structure of the RBD and effectively block the binding process. However, the mechanism by which plasma blocks the recognition and binding between the two is not clear. In this study, reaction process between reactive oxygen species (ROS) in plasma and the molecular model of RBD was simulated using a reactive molecular dynamics method. The results showed that the destruction of RBD molecule by ROS was triggered by hydrogen abstraction reactions. O and OH abstracted H atoms from RBD, while the H atoms of H2O2 and HO2 were abstracted by RBD. The hydrogen abstraction resulted in the breakage of C-H, N-H, O-H and C=O bonds and the formation of C=C, C=N bonds. The addition reaction of OH increased the number of O-H bonds and caused the formation of C-O, N-O and O-H bonds. The dissociation of N-H bonds led to the destruction of the original structure of peptide bonds and amino acid residues, change the type of amino acid residues, and caused the conversion of N-C and N=C, C=O and C-O. The simulation partially elucidated the microscopic mechanism of the interaction between ROS in plasma and the capsid protein of SARS-CoV-2, providing theoretical support for the control of SARS-CoV-2 infection by plasma, a contribution to overcoming the global epidemic problem.


Author(s):  
Kelvin Kai-Wang To ◽  
Xin Li ◽  
David Christopher Lung ◽  
Jonathan Daniel Ip ◽  
Wan-Mui Chan ◽  
...  

Abstract A false-positive SARS-CoV-2 RT-PCR result can lead to unnecessary public-health measures. We report two individuals whose respiratory specimens were contaminated by inactivated SARS-CoV-2 vaccine strain(CoronaVac), likely at vaccination premises. Incidentally, whole-genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.


2018 ◽  
Vol 56 (8) ◽  
Author(s):  
Cath Arnold ◽  
Kirstin Edwards ◽  
Meeta Desai ◽  
Steve Platt ◽  
Jonathan Green ◽  
...  

ABSTRACT Routine use of whole-genome analysis for infectious diseases can be used to enlighten various scenarios pertaining to public health, including identification of microbial pathogens, relating individual cases to an outbreak of infectious disease, establishing an association between an outbreak of food poisoning and a specific food vehicle, inferring drug susceptibility, source tracing of contaminants, and study of variations in the genome that affect pathogenicity/virulence. We describe the setup, validation, and ongoing verification of a centralized whole-genome-sequencing (WGS) laboratory to carry out sequencing for these public health functions for the National Infection Services, Public Health England, in the United Kingdom. The performance characteristics and quality control metrics measured during validation and verification of the entire end-to-end process (accuracy, precision, reproducibility, and repeatability) are described and include information regarding the automated pass and release of data to service users without intervention.


Author(s):  
Sharif Hala ◽  
Chakkiath Paul Antony ◽  
Mohammed Alshehri ◽  
Abdulhakeem O. Althaqafi ◽  
Asim Alsaedi ◽  
...  

Abstract Background Nosocomial infections caused by multi-drug resistant Enterobacteriaceae are a global public health threat that ought to be promptly identified, reported, and addressed accurately. Many carbapenem-resistant Enterobacteriaceae-associated genes have been identified in Saudi Arabia but not the endemic Klebsiella pneumoniae carbapenemases (KPCs), which are encoded by blaKPC-type genes. KPCs are known for their exceptional spreading potential. Methods We collected n = 286 multi-drug resistant (MDR) Klebsiella spp. isolates as part of screening for resistant patterns from a tertiary hospital in Saudi Arabia between 2014 and 2018. Antimicrobial susceptibility testing was carried out using both VITEK II and the broth microdilution of all collected isolates. Detection of resistance-conferring genes was carried out using Illumina whole-genome shotgun sequencing and PacBio SMRT sequencing protocols. Results A Carbapenem-resistant Enterobacteriaceae (CRE) Klebsiella quasipneumoniae subsp. similipneumoniae strain was identified as a novel ST-3510 carrying a blaKPC-2 carbapenemase encoding gene. The isolate, designated as NGKPC-421, was obtained from shotgun Whole Genome Sequencing (WGS) surveillance of 286 MDR Klebsiella spp. clinical isolates. The NGKPC-421 isolate was collected from a septic patient in late 2017 and was initially misidentified as K. pneumoniae. The sequencing and assembly of the NGKPC-421 genome resulted in the identification of a putative ~ 39.4 kb IncX6 plasmid harboring a blaKPC-2 gene, flanked by transposable elements (ISKpn6-blaKPC-2–ISKpn27). Conclusion This is the first identification of a KPC-2-producing CRE in the Gulf region. The impact on this finding is of major concern to the public health in Saudi Arabia, considering that it is the religious epicenter with a continuous mass influx of pilgrims from across the world. Our study strongly highlights the importance of implementing rapid sequencing-based technologies in clinical microbiology for precise taxonomic classification and monitoring of antimicrobial resistance patterns.


Author(s):  
Francisco Díez-Fuertes ◽  
María Iglesias-Caballero ◽  
Javier García Pérez ◽  
Sara Monzón ◽  
Pilar Jiménez ◽  
...  

SARS-CoV-2 whole-genome analysis has identified five large clades worldwide, emerged in 2019 (19A and 19B) and in 2020 (20A, 20B and 20C). This study aims to analyze the diffusion of SARS-CoV-2 in Spain using maximum likelihood phylogenetic and Bayesian phylodynamic analyses. The most recent common ancestor (MRCA) of the SARS-CoV-2 pandemic was estimated in Wuhan, China, around November 24, 2019. Phylogenetic analyses of the first 12,511 SARS-CoV-2 whole genome sequences obtained worldwide, including 290 from 11 different regions of Spain, revealed 62 independent introductions of the virus in the country. Most sequences from Spain were distributed in clades characterized by D614G substitution in S gene (20A, 20B and 20C) and L84S substitution in ORF8 (19B) with 163 and 118 sequences, respectively, with the remaining sequences branching in 19A. A total of 110 (38%) sequences from Spain grouped in four different monophyletic clusters of 20A clade (20A-Sp1 and 20A-Sp2) and 19B clade (19B-Sp1 and 19B-Sp2) along with sequences from 29 countries worldwide. The MRCA of 19A-Sp1, 20A-Sp1, 19A-Sp2 and 20A-Sp2 clusters were estimated in Spain around January 21 and 29, and February 6 and 17, 2020, respectively. The prevalence of 19B clade in Spain (40%) was by far higher than in any other European country during the first weeks of the epidemic, probably by a founder effect. However, this variant was replaced by G614-bearing viruses in April. In vitro assays showed an enhanced infectivity of pseudotyped virions displaying G614 substitution compared with D614, suggesting a fitness advantage of D614G. IMPORTANCE Multiple SARS-CoV-2 introductions have been detected in Spain and at least four resulted in the emergence of locally transmitted clusters originated not later than mid-February, with further dissemination to many other countries around the world and a few weeks before the explosion of COVID-19 cases detected in Spain during the first week of March. The majority of the earliest variants detected in Spain branched in 19B clade (D614 viruses), which was the most prevalent clade during the first weeks of March, pointing to a founder effect. However, from mid-March to June, 2020, G614-bearing viruses (20A, 20B and 20C clades) overcame D614 variants in Spain, probably as a consequence of an evolutionary advantage of this substitution in the spike protein. A higher infectivity of G614-bearing viruses compared to D614 variants was detected, suggesting that this substitution in SARS-CoV-2 spike protein could be behind the variant shift observed in Spain.


2020 ◽  
Vol 9 (39) ◽  
Author(s):  
Maria Grazia Cusi ◽  
David Pinzauti ◽  
Claudia Gandolfo ◽  
Gabriele Anichini ◽  
Gianni Pozzi ◽  
...  

ABSTRACT The complete genome sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolate Siena-1/2020 was obtained by Nanopore sequencing, combining the direct RNA sequencing and amplicon sequencing approaches. The isolate belongs to the B1.1 lineage, which is prevalent in Europe, and contains a mutation in the spike protein coding sequence leading to the D614G amino acid change.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Daichi Morita ◽  
Masatomo Morita ◽  
Munirul Alam ◽  
Asish K. Mukhopadhyay ◽  
Fatema-tuz Johura ◽  
...  

ABSTRACT Vibrio cholerae serogroup O1 is responsible for epidemic and pandemic cholera and remains a global public health threat. This organism has been well established as a resident flora of the aquatic environment that alters its phenotypic and genotypic attributes for better adaptation to the environment. To reveal the diversity of clinical isolates of V. cholerae O1 in the Bay of Bengal, we performed whole-genome sequencing of isolates from Kolkata, India, and Dhaka, Bangladesh, collected between 2009 and 2016. Comparison with global isolates by phylogenetic analysis placed the current isolates in two Asian lineages, with lineages 1 and 2 predominant in Dhaka and Kolkata, respectively. Each lineage possessed different genetic traits in the cholera toxin B subunit gene, Vibrio seventh pandemic island II, integrative and conjugative element, and antibiotic-resistant genes. Thus, although recent global transmission of V. cholerae O1 from South Asia has been attributed only to isolates of lineage 2, another distinct lineage exists in Bengal. IMPORTANCE Cholera continues to be a global concern, as large epidemics have occurred recently in Haiti, Yemen, and countries of sub-Saharan Africa. A single lineage of Vibrio cholerae O1 has been considered to be introduced into these regions from South Asia and to cause the spread of cholera. Using genomic epidemiology, we showed that two distinct lineages exist in Bengal, one of which is linked to the global lineage. The other lineage was found only in Iran, Iraq, and countries in Asia and differed from the global lineage regarding cholera toxin variant and drug resistance profile. Therefore, the potential transmission of this lineage to other regions would likely cause worldwide cholera spread and may result in this lineage replacing the current global lineage.


2006 ◽  
Vol 23 (9) ◽  
pp. 1670-1680 ◽  
Author(s):  
Esley M. Heizer ◽  
Douglas W. Raiford ◽  
Michael L. Raymer ◽  
Travis E. Doom ◽  
Robert V. Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document