scholarly journals The Adjuvants Polyphosphazene (PCEP) and a Combination of Curdlan Plus Leptin Promote a Th17-Type Immune Response to an Intramuscular Vaccine in Mice

Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 507
Author(s):  
Alyssa Chaffey ◽  
Glenn Hamonic ◽  
Dylan Chand ◽  
George K. Mutwiri ◽  
Heather L. Wilson

Our aim was to determine whether polyphosphazene (PCEP), Curdlan (β-glucan, a dectin-1 agonist), and Leptin could act as adjuvants to promote a Th17-type adaptive immune response in mice. Mice were vaccinated via the intramuscular route then boosted three weeks later with Ovalbumin plus: PCEP, Leptin, Curdlan, PCEP+Curdlan, Curdlan+Leptin, or saline. Mice vaccinated with OVA+PCEP and OVA+Curdlan+Leptin showed significantly higher frequency of antigen-specific CD4+ T cells secreting IL-17 relative to OVA-vaccinated mice. No formulation increased the frequency of CD4+ T cells secreting IL-4 or IFNγ. Since activation of innate immunity precedes the development of adaptive immunity, we wished to establish whether induction of Th17-type immunity could be predicted from in vitro experiments and/or from the local cytokine environment after immunization with adjuvants alone. Elevated IL-6 and TGFβ with reduced secretion of IL-12 is a cytokine milieu known to promote differentiation of Th17-type immunity. We injected the immunostimulants or saline buffer into murine thigh muscles and measured acute local cytokine production. PCEP induced significant production of IL-6 and reduced IL-12 production in muscle but it did not lead to elevated TGFβ production. Curdlan+Leptin injected into muscle induced significant production of TGFβ and IL-17 but not IL-6 or IL-12. We also stimulated splenocytes with media or PCEP, Leptin, Curdlan, PCEP+Curdlan, Curdlan+Leptin, PCEP+Leptin, and PCEP+Curdlan+Leptin and measured cytokine production. PCEP stimulation of splenocytes failed to induce significant production of IL-6, IL-12, TGFβ, or IL-17 and therefore ex vivo splenocyte stimulation failed to predict the increased frequency of Th17-type T cells in response to the vaccine. Curdlan-stimulated splenocytes produced Th1-type, inducing cytokine, IL-12. Curdlan+/-PCEP stimulated TGF-β production and Curdlan+Leptin+/- PCEP induced secretion of IL-17. We conclude that PCEP as well as Curdlan+Leptin are Th17-type vaccine adjuvants in mice but that cytokines produced in response to these adjuvants in muscle after injection or in ex vivo cultured splenocytes did not predict their role as a Th17-type adjuvant. Together, these data suggest that the cytokine environments induced by these immunostimulants did not predict induction of an antigen-specific Th17-type adaptive immune response. This is the first report of these adjuvants inducing a Th17-type adaptive immune response.

2007 ◽  
Vol 205 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Andrea J. Wolf ◽  
Ludovic Desvignes ◽  
Beth Linas ◽  
Niaz Banaiee ◽  
Toshiki Tamura ◽  
...  

The onset of the adaptive immune response to Mycobacterium tuberculosis is delayed compared with that of other infections or immunization, and allows the bacterial population in the lungs to expand markedly during the preimmune phase of infection. We used adoptive transfer of M. tuberculosis Ag85B-specific CD4+ T cells to determine that the delayed adaptive response is caused by a delay in initial activation of CD4+ T cells, which occurs earliest in the local lung-draining mediastinal lymph node. We also found that initial activation of Ag85B-specific T cells depends on production of antigen by bacteria in the lymph node, despite the presence of 100-fold more bacteria in the lungs. Although dendritic cells have been found to transport M. tuberculosis from the lungs to the local lymph node, airway administration of LPS did not accelerate transport of bacteria to the lymph node and did not accelerate activation of Ag85B-specific T cells. These results indicate that delayed initial activation of CD4+ T cells in tuberculosis is caused by the presence of the bacteria in a compartment that cannot be mobilized from the lungs to the lymph node, where initial T cell activation occurs.


Sarcoma ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
William W. Tseng ◽  
Shruti Malu ◽  
Minying Zhang ◽  
Jieqing Chen ◽  
Geok Choo Sim ◽  
...  

Treatment options are limited in well differentiated (WD) and dedifferentiated (DD) retroperitoneal liposarcoma. We sought to study the intratumoral adaptive immune response and explore the potential feasibility of immunotherapy in this disease. Tumor-infiltrating lymphocytes (TILs) were isolated from fresh surgical specimens and analyzed by flow cytometry for surface marker expression. Previously reported immune cell aggregates known as tertiary lymphoid structures (TLS) were further characterized by immunohistochemistry. In all fresh tumors, TILs were found. The majority of TILs were CD4 T cells; however cytotoxic CD8 T cells were also seen (average: 20% of CD3 T cells). Among CD8 T cells, 65% expressed the immune checkpoint molecule PD-1. Intratumoral TLS may be sites of antigen presentation as DC-LAMP positive, mature dendritic cells were found juxtaposed next to CD4 T cells. Clinicopathologic correlation, however, demonstrated that presence of TLS was associated with worse recurrence-free survival in WD disease and worse overall survival in DD disease. Our data suggest that an adaptive immune response is present in WD/DD retroperitoneal liposarcoma but may be hindered by TLS, among other possible microenvironmental factors; further investigation is needed. Immunotherapy, including immune checkpoint blockade, should be evaluated as a treatment option in this disease.


2012 ◽  
Vol 209 (8) ◽  
pp. 1391-1395 ◽  
Author(s):  
Andrea J. Sant ◽  
Andrew McMichael

Protective immunity to chronic and acute viral infection relies on both the innate and adaptive immune response. Although neutralizing antibody production by B cells and cytotoxic activity of CD8+ T cells are well-accepted components of the adaptive immune response to viruses, identification of the specific role of CD4+ T cells in protection has been more challenging to establish. Delineating the contribution of CD4+ T cells has been complicated by their functional heterogeneity, breadth in antigen specificity, transient appearance in circulation, and sequestration in tissue sites of infection. In this minireview, we discuss recent progress in identifying the multiple roles of CD4+ T cells in orchestrating and mediating the immune responses against viral pathogens. We highlight several recent reports, including one published in this issue, that have employed comprehensive and sophisticated approaches to provide new evidence for CD4+ T cells as direct effectors in antiviral immunity.


2019 ◽  
Vol 80 (12) ◽  
pp. 999-1005 ◽  
Author(s):  
Barbara Misme-Aucouturier ◽  
Adel Touahri ◽  
Marjorie Albassier ◽  
Francine Jotereau ◽  
Patrice Le Pape ◽  
...  

2021 ◽  
Vol 67 (2) ◽  
pp. 95-101
Author(s):  
Monica Vuță ◽  
Ionela-Maria Cotoi ◽  
Ion Bogdan Mănescu ◽  
Doina Ramona Manu ◽  
Minodora Dobreanu

Abstract Objective: In vitro cytokine production by peripheral blood mononuclear cells (PBMCs) is an important and reliable measure of immunocompetence. PBMC can be stimulated directly after isolation or frozen for later use. However, cryopreservation may affect cell recovery, viability and functionality. This study aims to investigate cytokine synthesis in ex-vivo stimulated fresh and cryopreserved CD4+ and CD4- T cells. Methods: PBMCs were obtained by Ficoll gradient centrifugation from heparinized peripheral blood of 6 middle-aged clinically healthy subjects. Half of these cells (labeled “Fresh”) was further processed and the other half (labeled “Cryo”) was cryopreserved at -140°C for up to 3 months. Fresh-PBMCs were activated with Phorbol-Myristate-Acetate/Ionomycin/Monensin for 5 hours immediately after isolation while Cryo-PBMCs were identically activated after thawing and cell resting. Activated cells were fixed, permeabilized and intracellular cytokine staining was performed using Phycoerythrin (PE)-conjugated antibodies for Interleukin-2 (IL-2), Tumor Necrosis Factor-alpha (TNF-a), and Interferon-gamma (IFN-g). All samples were analyzed within 24 hours by flow cytometry. Results: Both Fresh and Cryo CD3+CD4+/CD3+CD4- sub-populations partially produced each of the three cytokines. A higher percentage of CD4+ T cells produced IL-2 and TNF-a and a greater percentage of CD4- T cells were found to produce IFN-g. A significantly higher percentage of Cryo-lymphocytes was shown to produce TNF-a in both CD3+CD4+ (31.4% vs 24.9%, p=0.031) and CD3+CD4- (22.7% vs 17.9%, p=0.031) subpopulations. No notable difference was found for IL-2 and IFN-g production between Fresh and Cryo T cells. Conclusion: Cryopreservation for up to 3 months significantly increases TNF-a production of T-cells in clinically healthy middle-aged subjects.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1027
Author(s):  
Nima Taefehshokr ◽  
Sina Taefehshokr ◽  
Bryan Heit

The current coronavirus disease 2019 (COVID-19) pandemic, a disease caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), was first identified in December 2019 in China, and has led to thousands of mortalities globally each day. While the innate immune response serves as the first line of defense, viral clearance requires activation of adaptive immunity, which employs B and T cells to provide sanitizing immunity. SARS-CoV-2 has a potent arsenal of mechanisms used to counter this adaptive immune response through processes, such as T cells depletion and T cell exhaustion. These phenomena are most often observed in severe SARS-CoV-2 patients, pointing towards a link between T cell function and disease severity. Moreover, neutralizing antibody titers and memory B cell responses may be short lived in many SARS-CoV-2 patients, potentially exposing these patients to re-infection. In this review, we discuss our current understanding of B and T cells immune responses and activity in SARS-CoV-2 pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document