scholarly journals Serological Evidence of Human Infection with Coxiella burnetii after Occupational Exposure to Aborting Cattle

2021 ◽  
Vol 8 (9) ◽  
pp. 196
Author(s):  
Ana Rabaza ◽  
Federico Giannitti ◽  
Martín Fraga ◽  
Melissa Macías-Rioseco ◽  
Luis G. Corbellini ◽  
...  

Cattle are broadly deemed a source of Coxiella burnetii; however, evidence reinforcing their role in human infection is scarce. Most published human Q fever outbreaks relate to exposure to small ruminants, notably goats. Anti-phase II C. burnetii IgG and IgM were measured by indirect fluorescent antibody tests in 27 farm and veterinary diagnostic laboratory workers to ascertain whether occupational exposure to cattle aborting due to C. burnetii was the probable source of exposure. Four serological profiles were identified on the basis of anti-phase II IgG and IgM titres. Profile 1, characterised by high IgM levels and concurrent, lower IgG titres (3/27; 11.1%); Profile 2, with both isotypes with IgG titres higher than IgM (2/27; 7.4%); Profile 3 with only IgG phase II (5/27; 18.5%); and Profile 4, in which neither IgM nor IgG were detected (17/27; 63.0%). Profiles 1 and 2 are suggestive of recent C. burnetii exposure, most likely 2.5–4.5 months before testing and, hence, during the window of exposure to the bovine abortions. Profile 3 suggested C. burnetii exposure that most likely predated the window of exposure to aborting cattle, while Profile 4 represented seronegative individuals and, hence, likely uninfected. This study formally linked human Q fever to exposure to C. burnetii infected cattle as a specific occupational hazard for farm and laboratory workers handling bovine aborted material.

Author(s):  
Attila Dobos ◽  
István Fodor ◽  
Gerda Kiss ◽  
Miklós Gyuranecz

AbstractQ fever is a disease of high zoonotic potential, but interest in its causative agent is rather low although it causes some public health problems in Hungary. The prevalence of Q fever is highly variable by country. The main reservoirs of the disease are the same domestic ruminant species everywhere, but the epidemiological profile depends on the features of the specific reservoir. The aim of this large-scale study was to demonstrate the importance of Q fever in different species as a possible source for human infection in most regions of Hungary. A total of 851 serum samples from 44 dairy farms, 16 sheep flocks, 4 goat farms and 3 zoos located in different parts of Hungary were tested. The presence of antibodies to Coxiella burnetii was surveyed in dairy cattle (n = 547), goats (n = 71), sheep (n = 200) and zoo animals (n = 33). The animal species tested in Hungary showed different seroprevalence values of C. burnetii infection. Seropositivity by the enzyme-linked immunosorbent assay was found in 258 out of 547 (47.2%) cows and in 69 out of 271 (25.5%) small ruminants, among them in 47 out of 200 (23.5%) sheep and in 22 out of 71 (31.0%) goats. Antibodies to C. burnetii were not detected in zoo animals. Seropositivity was demonstrated in 44 out of 44 (100%) dairy cattle farms, with at least one serum sample found to be positive on each farm. The seropositivity rate of small ruminant farms was 55.0% (11 positive out of 20 tested), with 9 out of 16 (56.3%) sheep flocks and 2 out of 4 (50.0%) goat herds showing seropositivity.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1075
Author(s):  
Salvatore Ledda ◽  
Cinzia Santucciu ◽  
Valentina Chisu ◽  
Giovanna Masala

Q fever is a zoonosis caused by Coxiella burnetii, a Gram-negative pathogen with a complex life cycle and a high impact on public and animal health all over the world. The symptoms are indistinguishable from those belonging to other diseases, and the disease could be symptomless. For these reasons, reliable laboratory tests are essential for an accurate diagnosis. The aim of this study was to validate a novel enzyme-linked immunosorbent assay (ELISA) test, named the Chorus Q Fever Phase II IgG and IgM Kit (DIESSE, Diagnostica Senese S.p.A), which is performed by an instrument named Chorus, a new device in medical diagnostics. This diagnostic test is employed for the detection of antibodies against C. burnetii Phase II antigens in acute disease. Our validation protocol was performed according to the Italian Accreditation Body (ACCREDIA) (Regulation UNI CEI EN ISO/IEC 17025:2018 and 17043:2010), OIE (World Organization for Animal Health), and Statement for Reporting Studies of Diagnostic Accuracy (STARD). Operator performance was evaluated along with the analytical specificity and sensitivity (ASp and ASe) and diagnostic accuracy of the kit, with parameters such as diagnostic specificity and sensitivity (DSp and DSe) and positive and negative predictive values (PPV and NPV), in addition to the repeatability. According to the evaluated parameters, the diagnostic ELISA test was shown to be suitable for validation and commercialization as a screening method in human sera and a valid support for clinical diagnostics.


1996 ◽  
Vol 7 (1) ◽  
pp. 45-48
Author(s):  
TJ Marrie ◽  
Linda Yates

Western immunoblotting was used to compare the immune response toCoxiella burnetiiphase I and phase II antigens of humans with acute and chronic Q fever with that of infected cats, rabbits, cows and raccoons. The cats, rabbits, cows and raccoons had an immunoblot profile similar to that of the human with chronic Q fever.


Author(s):  
Sara Tomaiuolo ◽  
Samira Boarbi ◽  
Tiziano Fancello ◽  
Patrick Michel ◽  
Damien Desqueper ◽  
...  

Q fever is a zoonotic disease caused by the bacteria Coxiella burnetii. Domestic ruminants are the primary source for human infection, and the identification of likely contamination routes from the reservoir animals the critical point to implement control programs. This study shows that Q fever is detected in Belgium in abortion of cattle, goat and sheep at a different degree of apparent prevalence (1.93%, 9.19%, and 5.50%, respectively). In addition, and for the first time, it is detected in abortion of alpaca (Vicugna pacos), raising questions on the role of these animals as reservoirs. To determine the relationship between animal and human strains, Multiple Locus Variable-number Tandem Repeat Analysis (MLVA) (n=146), Single-Nucleotide Polymorphism (SNP) (n=92) and Whole Genome Sequencing (WGS) (n=4) methods were used to characterize samples/strains during 2009-2019. Three MLVA clusters (A, B, C) subdivided in 23 subclusters (A1-A12, B1-B8, C1-C3) and 3 SNP types (SNP1, SNP2, SNP6) were identified. The SNP2 type/MLVA cluster A was the most abundant and dispersed genotype over the entire territory, but it seemed not responsible for human cases, as it was only present in animal samples. The SNP1/MLVA B and SNP6/MLVA C clusters were mostly found in small ruminant and human samples, with the rare possibility of spillovers in cattle. SNP1/MLVA B cluster was present in all Belgian areas, while the SNP6/MLVA C cluster appeared more concentrated in the Western provinces. A broad analysis of European MLVA profiles confirmed the host-species distribution described for Belgian samples. In silico genotyping (WGS) further identified the spacer types and the genomic groups of C. burnetii Belgian strains: cattle and goat SNP2/MLVA A isolates belonged to ST61 and genomic group III, while the goat SNP1/MLVA B strain was classified as ST33 and genomic group II. In conclusion, Q fever is widespread in all Belgian domestic ruminants and in alpaca. We determined that the public health risk in Belgium is likely linked to specific genomic groups (SNP1/MLVA B and SNP6/MLVA C) mostly found in small ruminant strains. Considering the concordance between Belgian and European results, these considerations could be extended to other European countries.


Author(s):  
Rita Cruz ◽  
Carmen Vasconcelos-Nobrega ◽  
Fernando Esteves ◽  
Catarina Coelho ◽  
Ana Sofia Ferreira ◽  
...  

Q fever is a worldwide zoonotic infectious disease caused by Coxiella burnetii and ruminants, namely, cattle, sheep, and goats, are known to be the main reservoir for human infection. C. burnetii infection in animals can result in epizootic abortions which are often associated with vast bacteria shedding in birth fluids and placentas. Human infections mainly occur in persons handling infected animals and their products. Here the authors describe the history, bacteriology, biosafety, and epidemiology of Q fever, now known to be a serious threat to veterinary public health.


1989 ◽  
Vol 102 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Thomas J. Marrie ◽  
Donald Langille ◽  
Vasilia Papukna ◽  
Linda Yates

SUMMARYWe describe an outbreak of Q fever affecting 16 of 32 employees at a truck repair plant. None of the cases were exposed to cattle, sheep or goats. the traditional reservoirs of Q fever. The cases did not work, live on, or visit farms or attend livestock auctions. One of the employees had a cat which gave birth to kittens 2 weeks prior to the first case of Q fever in the plant. The cat owner fed the kittens every day before coming to work as the cat would not let the kittens suckle. Serum from the cat had high antibody titres to phase I and phase IICoxiella burnetiiantigens. The attack rate among the employees where the cat owner worked. 13 of 19 (68%), was higher than that of employees elsewhere, 3 of 13 (28%) [P <0·01]. The cat owner's wife and son also developed Q fever. None of the family members of the other employees with Q fever was so affected.We conclude that this outbreak of Q fever probably resulted from exposure to the contaminated clothing of the cat owner.


2006 ◽  
Vol 75 (1) ◽  
pp. 290-298 ◽  
Author(s):  
Sherry A. Coleman ◽  
Elizabeth R. Fischer ◽  
Diane C. Cockrell ◽  
Daniel E. Voth ◽  
Dale Howe ◽  
...  

ABSTRACT A biphasic developmental cycle whereby highly resistant small-cell variants (SCVs) are generated from large-cell variants (LCVs) is considered fundamental to the virulence of Coxiella burnetii, the causative agent of human Q fever. In this study a proteome analysis of C. burnetii developmental forms was conducted to provide insight into their unique biological and immunological properties. Silver-stained gels of SCV and LCV lysates separated by two-dimensional (2-D) gel electrophoresis resolved over 675 proteins in both developmental forms. Forty-eight proteins were greater than twofold more abundant in LCVs than in SCVs, with six proteins greater than twofold more abundant in SCVs than in LCVs. Four and 15 upregulated proteins of SCVs and LCVs, respectively, were identified by mass spectrometry, and their predicted functional roles are consistent with a metabolically active LCV and a structurally resistant SCV. One-dimensional and 2-D immunoblots of cell form lysates probed with sera from infected/vaccinated guinea pigs and convalescent-phase serum from human patients who had recovered from acute Q fever, respectively, revealed both unique SCV/LCV antigens and common SCV/LCV antigens that were often differentially synthesized. Antigens recognized during human infection were identified by mass spectroscopy and included both previously described immunodominant proteins of C. burnetii and novel immunogenic proteins that may be important in the pathophysiology of clinical Q fever and/or the induction of protective immunity.


2012 ◽  
Vol 19 (10) ◽  
pp. 1661-1666 ◽  
Author(s):  
C. C. H. Wielders ◽  
L. M. Kampschreur ◽  
P. M. Schneeberger ◽  
M. M. Jager ◽  
A. I. M. Hoepelman ◽  
...  

ABSTRACTLittle is known about the effect of timing of antibiotic treatment on development of IgG antibodies following acute Q fever. We studied IgG antibody responses in symptomatic patients diagnosed either before or during development of the serologic response toCoxiella burnetii. Between 15 and 31 May 2009, 186 patients presented with acute Q fever, of which 181 were included in this retrospective study: 91 early-diagnosed (ED) acute Q fever patients, defined as negative IgM phase II enzyme-linked immunosorbent assay (ELISA) and positive PCR, and 90 late-diagnosed (LD) acute Q fever patients, defined as positive/dubious IgM phase II ELISA and positive immunofluorescence assay (IFA). Follow-up serology at 3, 6, and 12 months was performed using IFA (IgG phase I and II). High IgG antibody titers were defined as IgG phase II titers of ≥1:1,024 together with IgG phase I titers of ≥1:256. At 12 months, 28.6% of ED patients and 19.5% of LD patients had high IgG antibody titers (P= 0.17). No statistically significant differences were found in frequencies of IgG phase I and IgG phase II antibody titers at all follow-up appointments for adequately and inadequately treated patients overall, as well as for ED and LD patients analyzed separately. Additionally, no significant difference was found in frequencies of high antibody titers and between early (treatment started within 7 days after seeking medical attention) and late timing of treatment. This study indicates that early diagnosis and antibiotic treatment of acute Q fever do not prohibit development of the IgG antibody response.


Sign in / Sign up

Export Citation Format

Share Document