scholarly journals Local Scour of Armor Layer Processes around the Circular Pier in Non-Uniform Gravel Bed

Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1421 ◽  
Author(s):  
Manish Pandey ◽  
Su-Chin Chen ◽  
P. K. Sharma ◽  
C. S. P. Ojha ◽  
V. Kumar

Flume experiments have been carried out under clear water scour conditions to analyze the maximum equilibrium scour depth and scour processes in armored streambeds. A total of 85 experiments have been carried out using different diameters of circular piers and non-uniform gravels. A graphical approach for dimensionless scour depth in equilibrium condition around the circular pier in armored streambeds has been developed. As per this curve, the maximum dimensionless scour depth variation with dimensionless armor particle size depends on the densimetric particle Froude number (Frd50), and the decreasing rate of dimensionless scour depth decreases with the value of Frd50.

2018 ◽  
Vol 80 ◽  
pp. 49-56 ◽  
Author(s):  
Mustafa Dogan ◽  
Aysegul Ozgenc Aksoy ◽  
Yalcin Arisoy ◽  
Mehmet Sukru Guney ◽  
Vahid Abdi

2005 ◽  
Vol 32 (4) ◽  
pp. 775-781 ◽  
Author(s):  
Rajkumar V Raikar ◽  
Subhasish Dey

An experimental investigation on scour at circular and square piers in uniform and non-uniform gravels (fine and medium sizes) under clear-water scour at limiting stability of gravels is presented. From the experimental results, it is observed that the equilibrium scour depth increases with decrease in gravel size. The variation of equilibrium scour depth with gravel sizes departures considerably from that with sand sizes. Consequently, the resulting sediment size factors for gravels, obtained from envelope curve fitting, are significantly different from the existing sediment size factor for sands. The influence of gravel gradation on scour depth is also prominent in non-uniform gravels. The time scales to represent the time variation of scour depth in uniform and non-uniform gravels are determined. For uniform gravels, the non-dimensional time scale increases with increase in pier Froude number and gravel size, whereas for non-uniform gravels, it decreases with increase in geometric standard deviation of particle size distribution of gravels.Key words: bridge pier, gravel beds, scour, erosion, sediment transport, open channel flow, hydraulic engineering.


Author(s):  
Xiaofan Lou ◽  
Kaibing Zhang ◽  
Zhenhong Chen

Abstract The effect of Reynolds number (Re) on the local scour around a monopile encountering steady current was investigated experimentally in a water flume. The experiment was performed using circular cylinders with different diameters under two different freestream velocities, covering both clear-water and live-bed scours and a Reynolds number range of approximately 9,000–60,000. The time-series of the scour depth was recorded during the whole scour process and the scour pit was scanned after the scour process reached equilibrium. Results are presented in terms of the equilibrium scour depth, the time-scale of the scour process and the three-dimensional scour profile at different Reynolds numbers. For both clear-water and live-bed scours, the time history of the scour process indicate that the time-scale becomes larger as Re increases. It is also found that the normalized equilibrium scour depth, as well as the normalized scour radius, decrease with the increasing Re. An empirical equation of the equilibrium scour depth is derived as a function of Reynolds number based on the experimental results so as to better account for Re effect in the scour design.


2011 ◽  
Vol 121-126 ◽  
pp. 162-166
Author(s):  
Yao Ming Hong ◽  
Min Li Chang ◽  
Hsueh Chun Lin ◽  
Yao Chiang Kan ◽  
Chi Chang Lin

This study analyzed the characteristics of bridge scoured by clear water according to 14 groups of laboratory experiments. The formulation of critical velocity based on historical equations of clear water scour was concluded for the test circumstances in laboratory. The experimental conditions include the variation of flow velocity, sediment cover depth, and diameter of bridge pier/bases. The erosion status prior to the maximum scour depth was recorded by a pinhole camera, and, in general, the equilibrium scour depth was reached after 24 hours. The maximum scour depth increases as the sand cover depth decreases. As the same sediment depth, the fast flow velocity will induce the deep scour depth with respect to the slow flow velocity. The same result can be observed for the large diameter of pier (or base) versus the small one. The maximum scour depths in the front of the pier are always deeper than that behind the pier.


2020 ◽  
Vol 8 (11) ◽  
pp. 856
Author(s):  
Xuan Ni ◽  
Leiping Xue

Scour prediction is essential for the design of offshore foundations. Several methods have been proposed to predict the equilibrium scour depth for monopiles. By introducing an effective diameter, such methods could also be applied to predicting scour depth for pile groups. Yet, there are still difficulties in estimating the equilibrium scour depth of foundations in complex shapes, such as the tripod foundation. This study investigates the clear-water scour around the tripod and hexapod foundations through laboratory experiments, with uniform bed sediment and steady current. Here, the authors propose an approach to calculate the effective diameter for the tripod and hexapod models, which is similarly as for the pile groups. Three widely-used methods in predicting equilibrium scour depth have been evaluated, and the best method is recommended.


2020 ◽  
Vol 20 (3) ◽  
pp. 943-952 ◽  
Author(s):  
Ravindra Kumar Singh ◽  
Manish Pandey ◽  
Jaan H. Pu ◽  
Srinivas Pasupuleti ◽  
Vasanta G. Kumar Villuri

Abstract In this paper, experimental results of clear-water scour on a sand bed under short contractions were studied. Sequences of test runs were performed under clear-water conditions for three different contraction ratios. The outcomes of the experiments were employed to define the effects of various parameters on equilibrium scour depth under clear-water scour conditions. In this work, the precision of three maximum scour depth equations was tested from previous studies for contraction scour cases. Two new analytical equations were proposed to calculate time-dependent scour depth and maximum scour at equilibrium conditions, respectively, from the study. The proposed equations were validated using measurements from the present study as well as from previous literature, and the equations show a reasonable agreement between measured and computed values of scour depth under clear-water conditions in short contraction. The presented equations can be used for studying protection of the submerged portion at a bridge abutment or any similar structure.


2016 ◽  
Vol 43 (8) ◽  
pp. 759-768 ◽  
Author(s):  
Mehmet Ali Kökpinar ◽  
Serhat Kucukali

This study quantifies the dimensionless maximum scour depth ds/D50 downstream of flip buckets as a function of the square of the densimetric Froude number Frd2, jet Reynolds number Re, lip angle, and sediment non-uniformity constant. The proposed formula is valid for Frd = 2.9–29.69, Re = 8.9 × 103–4.2 × 105, and We > 32. Moreover, the scour profiles for different sediment sizes (D50 = 3–17 mm) are presented from the Kigi Dam physical model and the effect of the Reynolds number on scour process is discussed. The prediction capacity of the proposed formula is compared with the existing empirical formulas in the literature and it is shown that the proposed dimensionally homogenous formula made better estimations. The procedure described here has a sound physical basis and it can be used to estimate the maximum scour depth downstream of flip buckets.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fan Cui ◽  
Yunfei Du ◽  
Xianjie Hao ◽  
Suping Peng ◽  
Zhuangzhuang Bao ◽  
...  

Among the various geological disasters that threaten the safe operation of long-distance oil and gas pipelines, water-damage disasters are numerous and widely developed. Especially the pipelines crossing river channels or gullies are vulnerable to scouring hazards from storms and floods. A water-damage disaster physical model was established to investigate the characteristics of the riverbed scour profile and the pipeline force when the pipeline was buried at different depths under the condition of different particle size riverbed sediment. Results indicated that the equilibrium scour depth changed in a spoon shape with the gradual increase of the embedment ratio in general. The equilibrium scour depth formed by the fine sand riverbed was the largest, about 1.5 times the pipeline diameter. When the pipeline was half exposed, the clay riverbed was more resistant to the scour of the river than the riverbed of fine sand and very fine pebbles with a larger particle size. In the riverbed of three particle sizes, fine sand was more difficult to withstand the scour of the river. The scour profile formed by the sand bed around the pipeline and the force and deformation of the pipeline were related to pipeline location and riverbed sediment type. Results of this study might be useful for the safety warning and protection measures of underwater pipeline crossing.


Author(s):  
Mark N. Landers ◽  
David S. Mueller

Field measurements of channel scour at bridges are needed to improve the understanding of scour processes and the ability to accurately predict scour depths. An extensive data base of pier-scour measurements has been developed over the last several years in cooperative studies between state highway departments, the Federal Highway Administration, and the U.S. Geological Survey. Selected scour processes and scour design equations are evaluated using 139 measurements of local scour in live-bed and clear-water conditions. Pier-scour measurements were made at 44 bridges around 90 bridge piers in 12 states. The influence of pier width on scour depth is linear in logarithmic space. The maximum observed ratio of pier width to scour depth is 2.1 for piers aligned to the flow. Flow depth and scour depth were found to have a relation that is linear in logarithmic space and that is not bounded by some critical ratio of flow depth to pier width. Comparisons of computed and observed scour depths indicate that none of the selected equations accurately estimate the depth of scour for all of the measured conditions. Some of the equations performed well as conservative design equations; however, they overpredict many observed scour depths by large amounts. Some equations fit the data well for observed scour depths less than about 3 m (9.8 ft), but significantly underpredict larger observed scour depths.


Sign in / Sign up

Export Citation Format

Share Document