An Experimental Study of Falling Liquid Film Breakdown on a Horizontal Cylinder During Heat Transfer

1980 ◽  
Vol 102 (2) ◽  
pp. 342-346 ◽  
Author(s):  
E. N. Ganic ◽  
M. N. Roppo

In this study, an experimental investigation was conducted with subcooled water film flowing over an electrically heated horizontal cylinder. The combinations of film flow rate and heat flux at which film breakdown occurs (i.e., dry patches appear on the surface) were determined. At the conditions prior to dry patch formation, the heat transfer coefficient was determined as well. The results showed that the heat flux needed to cause a dry patch increases with film flow rate. Also, prior to dry patch formation, the heat transfer coefficient increases with film flow rate. The effects of the tube spacing and the liquid film inlet temperature on the breakdown heat flux and heat transfer coefficient were also studied.

Author(s):  
Sudipta Saha ◽  
Rajib Mahamud ◽  
Jamil Khan ◽  
Tanvir Farouk

Phase change driven heat transfer has been the topic of interest for a significantly long time. However, in recent years on demand sweating boosted evaporation which requires substantially less amount of the liquid medium has drawn attention as a possible way of increasing/supplementing heat transfer under convective conditions where the convective heat transfer coefficient has already reached its maximum value as well as where dry cooling is a desired objective. In this study, a numerical study is conducted to obtain insight into the ‘hybrid’ system where evaporation and convection both contribute to the heat transfer effect. The system modeled consists of evaporation of thin liquid (water) film under a laminar flow condition. The mathematical model employed consists of coupled conservation equations of mass, species, momentum and energy for the convection-evaporation domain (gaseous), with only mass and energy conservation being resolved in the liquid film domain. The evaporative mass flux is obtained from a modified Hertz-Knudsen relation which is a function of liquid-vapor interface temperature and pressure. A two-dimensional rectangular domain with a pre-prescribed thin liquid water film representative of an experiment is simulated with the developed model. The thin rectangular liquid film is heated by uniform heat flux and is placed in the convection-evaporation domain with an unheated starting length. A moving boundary mesh is applied via the“Arbitrary Lagrangian-Eulerian” technique to resolve the receding liquid interface resulting from evaporation. The prescribed relative displacement of the moving interface is calculated from the net mass flux due to evaporation and is governed by the principle of mass conservation. Simulations were conducted over a range of Reynolds number, heat flux conditions and liquid film thickness. The numerical predictions indicate that under convective-evaporative conditions the overall heat transfer coefficient increases significantly (∼factor of a five) in comparison to the purely forced convection scenario. An increase in the heat transfer coefficient is observed with Reynolds number and vice versa for film thickness. A critical Reynolds number is identified beyond which the heat transfer coefficient does not continue to increase significantly rather tends to plateau out.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1566 ◽  
Author(s):  
M. M. Sarafraz ◽  
M. S. Shadloo ◽  
Zhe Tian ◽  
Iskander Tlili ◽  
Tawfeeq Abdullah Alkanhal ◽  
...  

Formation of bubbles in water inside an annulus pipe in a flow boiling regime was experimentally investigated. The effect of various variables, such as total dissolved solid materials (TDS) in terms of mass fraction, flow rate of water, and applied heat flux (HF) on the heat transfer coefficient (HTC) and bubble behavior of water, was experimentally investigated. A regression formula was fitted to estimate the average bubble diameter at various TDS values, with accuracy of <4.1% up to heat flux of 90 kW/m2. Results show that the presence of TDS materials can increase the contact angle of bubble and bubble diameter, and also promotes the HTC value of the system. However, flow rate of water suppressed bubble generation, and increased the heat transfer coefficient due to the renewal of the thermal boundary layer around the boiling surface. Likewise, it was identified that forced convective and nucleate boiling heat transfer mechanisms contribute to the flow of boiling water, and heat flux is a key parameter in determining the mechanism of heat transfer. In the present study, heat flux of 15 kW/m2 at 50 °C was the heat flux in which onset of nucleate boiling was identified inside the annulus pipe. The contact angle of water at TDS values of 300 mg/L and 1200 mg/L was 74° and 124°, respectively, showing the improvement in heat transfer characteristics of water due to the presence of TDS materials.


Author(s):  
Peng Xu ◽  
Tao Zhou ◽  
Jialei Zhang ◽  
Juan Chen ◽  
Zhongguan Fu

Abstract There are many factors that can affect the heat transfer coefficient (HTC) of supercritical water in forced and natural circulation. The correlation between the factors with the HTC under different circulation modes has an important influence on the reactor core design. By extracting the experimental data of supercritical water in forced circulation and natural circulation, the grey correlation model was used to analyze the relational degree between these factors with HTC. The results show that: Under the condition of forced circulation, there is a positive correlation between the inlet temperature, mass flow velocity, the thickness of the grid body with the HTC of supercritical water, and the order is: mass flow velocity &gt; inlet temperature &gt; the thickness of the grid body; there is a negative correlation between the pressure, heat flux with the heat transfer coefficient of supercritical water, and the order is: pressure &gt; heat flux. Under the condition of natural circulation, there is a positively correlation between heating power, inlet temperature and circulation flow rate with HTC, and the order of magnitude is: circulation flow rate &gt; heating power &gt; inlet temperature; diameter and pressure are negatively correlated with heat transfer coefficient, and the order of magnitude is: pressure &gt; diameter. In the two circulation modes, mass flow rate is an important factor affecting the heat transfer capacity of supercritical water, while the effect of heat flux on the heat transfer coefficient is contrary.


Author(s):  
AS Sabu ◽  
Joby Mackolil ◽  
B Mahanthesh ◽  
Alphonsa Mathew

The study focuses on the aggregation kinematics in the quadratic convective magneto-hydrodynamics of ethylene glycol-titania ([Formula: see text]) nanofluid flowing through an inclined flat plate. The modified Krieger-Dougherty and Maxwell-Bruggeman models are used for the effective viscosity and thermal conductivity to account for the aggregation aspect. The effects of an exponential space-dependent heat source and thermal radiation are incorporated. The impact of pertinent parameters on the heat transfer coefficient is explored by using the Response Surface Methodology and Sensitivity Analysis. The effects of several parameters on the skin friction and heat transfer coefficient at the plate are displayed via surface graphs. The velocity and thermal profiles are compared for two physical scenarios: flow over a vertical plate and flow over an inclined plate. The nonlinear problem is solved using the Runge–Kutta-based shooting technique. It was found that the velocity profile significantly decreased as the inclination of the plate increased on the other hand the temperature profile improved. The heat transfer coefficient decreased due to the increase in the Hartmann number. The exponential heat source has a decreasing effect on the heat flux and the angle of inclination is more sensitive to the heat transfer coefficient than other variables. Further, when radiation is incremented, the sensitivity of the heat flux toward the inclination angle augments at the rate 0.5094% and the sensitivity toward the exponential heat source augments at the rate 0.0925%. In addition, 41.1388% decrement in wall shear stress is observed when the plate inclination is incremented from [Formula: see text] to [Formula: see text].


2019 ◽  
Vol 9 ◽  
pp. 184798041987646 ◽  
Author(s):  
XiaoRong Zhou ◽  
Yi Wang ◽  
Kai Zheng ◽  
Haozhong Huang

In this study, the cooling performance of nanofluids in car radiators was investigated. A car radiator, temperature measuring instrument, and other components were used to set up the experimental device, and the temperature of nanofluids passing through the radiator was measured by this device. Three kinds of nanoparticles, γ-Al2O3, α-Al2O3, and ZnO, were added to propylene glycol to prepared nanofluids, and the effects of nanoparticle size and type, volume concentration, initial temperature, and flow rate were tested. The results indicated that the heat transfer coefficients of all nanofluids first increased and then decreased with an increase in volume concentration. The ZnO-propylene glycol nanofluid reached a maximum heat transfer coefficient at 0.3 vol%, and the coefficient decreased by 25.6% with an increase in volume concentration from 0.3 vol% to 0.5 vol%. Smaller particles provided a better cooling performance, and the 0.1 vol% γ-Al2O3-propylene glycol nanofluid had a 19.9% increase in heat transfer coefficient compared with that of α-Al2O3-propylene glycol. An increase in flow rate resulted in a 10.5% increase in the heat transfer coefficient of the 0.5 vol% α-Al2O3-propylene glycol nanofluid. In addition, the experimental temperature range of 40–60°C improved the heat transfer coefficient of the 0.2 vol% ZnO-propylene glycol nanofluid by 46.4%.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Peter Schreivogel ◽  
Michael Pfitzner

A new approach for steady-state heat transfer measurements is proposed. Temperature distributions are measured at the surface and a defined depth inside the wall to provide boundary conditions for a three-dimensional heat flux calculation. The practical application of the technique is demonstrated by employing a superposition method to measure heat transfer and film cooling effectiveness downstream of two different 0.75D deep narrow trench geometries and cylindrical holes. Compared to the cylindrical holes, both trench geometries lead to an augmentation of the heat transfer coefficient supposedly caused by the highly turbulent attached cooling film emanating from the trenches. Areas of high heat transfer are visible, where recirculation bubbles or large amounts of coolant are expected. Increasing the density ratio from 1.33 to 1.60 led to a slight reduction of the heat transfer coefficient and an increased cooling effectiveness. Both trenches provide a net heat flux reduction (NHFR) superior to that of cylindrical holes, especially at the highest momentum flux ratios.


Author(s):  
M. Hamayun Maqbool ◽  
Bjo¨rn Palm ◽  
R. Khodabandeh ◽  
Rashid Ali

Experiments have been performed to investigate heat transfer in a circular vertical mini channel made of stainless steel (AISI 316) with internal diameter of 1.70 mm and a uniformly heated length of 245 mm using ammonia as working fluid. The experiments are conducted for a heat flux range of 15 to 350 kW/m2 and mass flux range of 100 to 500 kg/m2s. The effects of heat flux, mass flux and vapour quality on the heat transfer coefficient are explored in detail. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux while mass flux and vapour quality have no considerable effect. Experimental results are compared to predictive methods available in the literature for boiling heat transfer. The correlations of Cooper et al. [1] and Shah [3] are in good agreement with our experimental data.


1969 ◽  
Vol 91 (1) ◽  
pp. 27-36 ◽  
Author(s):  
B. S. Shiralkar ◽  
Peter Griffith

At slightly supercritical pressure and in the neighborhood of the pseudocritical temperature (which corresponds to the peak in the specific heat at the operating pressure), the heat transfer coefficient between fluid and tube wall is strongly dependent on the heat flux. For large heat fluxes, a marked deterioration takes place in the heat transfer coefficient in the region where the bulk temperature is below the pseudocritical temperature and the wall temperature above the pseudocritical temperature. Equations have been developed to predict the deterioration in heat transfer at high heat fluxes and the results compared with previously available results for steam. Experiments have been performed with carbon dioxide for additional comparison. Limits of safe operation for a supercritical pressure heat exchanger in terms of the allowable heat flux for a particular flow rate have been determined theoretically and experimentally.


Author(s):  
J. S. Hu ◽  
Christopher Y. H. Chao

Experiments were carried out to study the condensation flow pattern in silicon micro condenser using water as medium. Five flow patterns were identified under our experimental conditions. Slug-bubbly flow and droplet/liquid slug flow were found to be the two dominant flows in the micro condenser. These two flow patterns subsequently determined the heat transfer and pressure drop properties of the fluid. It was observed that only slug-bubbly flow existed in low steam mass flow and high heat flux conditions. When the steam mass flow rate increased or the heat flux dropped, mixed flow pattern occurred. An empirical correlation was obtained to predict when the transition of the flow pattern from slug-bubbly flow to mixed flow could appear. In the slug-bubbly flow regime, heat transfer coefficient and pressure drop in the micro condensers were studied. It was found that micro condensers with smaller channels could exhibit higher heat transfer coefficient and pressure drop. At constant heat flux, increasing the steam mass flow rate resulted in a higher heat transfer coefficient and also the pressure drop.


2012 ◽  
Vol 188 ◽  
pp. 264-269
Author(s):  
Li Xin Qu ◽  
Yi Hong Zhou ◽  
Yao Ying Huang ◽  
Guo Qing Tang ◽  
Shao Wu Zhou

Most of the cracks on concrete dam are external ones, while external heat preservation is an important measure to prevent cracking. In order to obtain the actual thermal parameters, according to thermal conduction theory and the temperature distribution conditions of optical fiber on concrete surface, the surface temperature distribution of concrete pouring deck was real-time monitored by setting optical fiber in different depths; then the surface heat flux of mass concrete was calculated, thereby the equivalent surface heat transfer coefficient, which varied as time goes, was inversed. It is indicated that the inversion process is relatively simple and reliable, and the heat transfer coefficient obtained can well reflect the real performance of the insulation materials. Meanwhile, it is also indicated that the heat transfer coefficient of equivalent surface varies as time goes, which can contribute to back analysis calculation and actual engineering practice.


Sign in / Sign up

Export Citation Format

Share Document