scholarly journals Estimation of Unsaturated Hydraulic Conductivity of Granular Soils from Particle Size Parameters

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1826 ◽  
Author(s):  
Ji-Peng Wang ◽  
Pei-Zhi Zhuang ◽  
Ji-Yuan Luan ◽  
Tai-Heng Liu ◽  
Yi-Ran Tan ◽  
...  

Estimation of unsaturated hydraulic conductivity could benefit many engineering or research problems such as water flow in the vadose zone, unsaturated seepage and capillary barriers for underground waste isolation. The unsaturated hydraulic conductivity of a soil is related to its saturated hydraulic conductivity value as well as its water retention behaviour. By following the first author’s previous work, the saturated hydraulic conductivity and water retention curve (WRC) of sandy soils can be estimated from their basic gradation parameters. In this paper, we further suggest the applicable range of the estimation method is for soils with d10 > 0.02mm and Cu < 20, in which d10 is the grain diameter corresponding to 10% passing and Cu is the coefficient of uniformity (Cu=d60d10). The estimation method is also modified to consider the porosity variation effect. Then the proposed method is applied to predict unsaturated hydraulic conductivity properties of different sandy soils and also compared with laboratory and field test results. The comparison shows that the newly developed estimation method, which predicts the relative permeability of unsaturated sands from basic grain size parameters and porosity, generally has a fair agreement with measured data. It also indicates that the air-entry value is mainly relative to the mean grain size and porosity value change from the intrinsic value. The rate of permeability decline with suction is mainly associated with grain size polydispersity.

2020 ◽  
Vol 195 ◽  
pp. 01004
Author(s):  
Ali Kolahdooz ◽  
Hamed Sadeghi ◽  
Mohammad Mehdi Ahmadi

Dispersive soils, as one of the main categories of problematic soils, can be found in some parts of the earth, such as the eastern-south of Iran, nearby the Gulf of Oman. One of the most important factors enhancing the dispersive potential is the existence of dissolved salts in the soil water. The main objective of this study is to explore the influence of water salinity on the instability of a railway embankment due to rainfall infiltration. In order to achieve this goal, the embankment resting on a dispersive stratum is numerically modeled and subjected to transient infiltration flow. The effect of dispersion is simplified through variations in the soil-water retention curve with salinity. The measured water retention curves revealed that by omitting the natural salinity in the soil-water, the retention capability of the soil decreases; therefore, the unsaturated hydraulic conductivity of the soil stratum will significantly decline. According to the extensive decrease in the hydraulic conductivity of the desalinated materials, the rainfall cannot infiltrate in the embankment and the rainfall mostly runs off. However, in the saline embankment, the infiltration decreases the soil suction; and consequently, the factor of safety of the railway embankment decreases.


HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1106-1112 ◽  
Author(s):  
Paraskevi A. Londra

For effective irrigation and fertilization management, the knowledge of substrate hydraulic properties is essential. In this study, a steady-state laboratory method was used to determine simultaneously the water retention curve, θ(h), and unsaturated hydraulic conductivity as a function of volumetric water content, K(θ), and water pressure head, K(h), of five substrates used widely in horticulture. The substrates examined were pure peat, 75/25 peat/perlite, 50/50 peat/perlite, 50/50 coir/perlite, and pure perlite. The experimental retention curve results showed that in the case of peat and its mixtures with perlite, there is a hysteresis between drying and wetting branches of the retention curve. Whereas in the case of coir/perlite and perlite, the phenomenon of hysteresis was less pronounced. The increase of perlite proportion in the peat/perlite mixtures led to a decrease of total porosity and water-holding capacity and an increase of air space. Study of the K(θ) and K(h) experimental data showed that the hysteresis phenomenon of K(θ) was negligible compared with the K(h) data for all substrates examined. Within a narrow range of water pressure head (0 to –70 cm H2O) that occurs between two successive irrigations, a sharp decrease of the unsaturated hydraulic conductivity was observed. The comparison of the K(θ) experimental data between the peat-based substrate mixtures and the coir-based substrate mixture showed that for water contents lower than 0.40 m3·m−3, the hydraulic conductivity of the 50/50 coir/perlite mixture was greater. The comparison between experimental water retention curves and predictions using Brooks-Corey and van Genuchten models showed a high correlation (0.992 ≤ R2 ≤ 1) for both models for all substrates examined. On the other hand, in the case of unsaturated hydraulic conductivity, the comparison showed a relatively good correlation (0.951 ≤ R2 ≤ 0.981) for the van Genuchten-Mualem model for all substrates used except perlite and a significant deviation (0.436 ≤ R2 ≤ 0.872) for the Brooks-Corey model for all substrates used.


2020 ◽  
Author(s):  
Boguslaw Usowicz ◽  
Jerzy Lipiec

&lt;p&gt;Soil organic carbon accumulation is central to the improvement of many soil properties and functions. Biochar use and management could be particularly beneficial for soils with low organic carbon content. It's known that many of soils in the world intrinsically exhibit little ability to retain water and nutrients due to their texture and mineralogy. Also, acquiring biomass for other than agricultural purposes can reduce the organic carbon accumulation and worsens the soil quality. Adding biochar to the soil can affect saturated hydraulic conductivity, water holding capacity and reduce soil erosion and mineral fertilization. It has been shown that saturated hydraulic conductivity depends on type of feedstock and pyrolysis temperatures used for biochar production and application dose but the results are inconsistent. Therefore, in order to explain the different biochar impacts, we propose in this study the use the physical-statistical model of B. Usowicz for predicting the saturated hydraulic conductivity using literature data for various soils amended with biochars (from woodchip, rice straw and dairy manure), pyrolyzed at 300, 500 and 700 &amp;#176;C. &amp;#160;&lt;/p&gt;&lt;p&gt;Soil with biochar and pores between them can be represented by a pattern (net) of more or less cylindrically interconnected channels with different capillary radius. When we view a porous medium as a net of interconnected capillaries, we can apply a statistical approach for the description of the liquid or gas flow. The soil and biochar phases and their configuration is decisive for pore distribution and the course of the water retention curve in this medium. The physical-statistical model considers the pore space as the capillary net that is represented by parallel and serial connections of hydraulic resistors in the layer and between the layers, respectively. The polynomial distribution was used in this model to determine probability of the occurrence of a given capillary configuration. Capillary size radii and the probability of occurrence of a given capillary configuration were calculated based on the measured water retention curve and saturated water content. It was found a good agreement between measured and the model-predicted hydraulic conductivity data for the biochar amended soils. It indicates that the used variables and model parameters to predict the saturated hydraulic conductivities of the soils were chosen correctly. The different types and pyrolysis temperatures of biochars affected the soil water retention and the equivalent length of the capillaries that characterize the pore tortuosity in the soil.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Acknowledgements. Research was conducted under the project &amp;#8220;Water in soil - satellite monitoring and improving the retention using biochar&amp;#8221; no. BIOSTRATEG3/345940/7/NCBR/2017 which was financed by Polish National Centre for Research and Development in the framework of &amp;#8220;Environment, agriculture and forestry&amp;#8221; - BIOSTRATEG strategic R&amp;D programme.&lt;/p&gt;


2021 ◽  
Vol 13 (6) ◽  
pp. 3303
Author(s):  
Faisal Hayat ◽  
Mohanned Abdalla ◽  
Muhammad Usman Munir

The rhizosphere is one of the major components in the soil–plant–atmosphere continuum which controls the flow of water from the soil into roots. Plant roots release mucilage in the rhizosphere which is capable of altering the physio-chemical properties of this region. Here, we showed how mucilage impacted on rhizosphere hydraulic properties, using simple experiments. An artificial rhizosphere, treated or not with mucilage, was placed in a soil sample and suction was applied to mimic the negative pressure in plant xylem. The measured water contents and matric potential were coupled with numerical models to estimate the water retention curve and hydraulic conductivity. A slower loss of water was observed in the treated scenario which resulted in an increase in water retention. Moreover, a slightly lower hydraulic conductivity was initially observed in the treated scenario (8.44 × 10−4 cm s−1) compared to the controlled one in saturated soil. Over soil drying, a relatively higher unsaturated hydraulic conductivity was observed. In summary, we demonstrated that mucilage altered the rhizosphere hydraulic properties and enhanced the unsaturated hydraulic conductivity. These findings improve our understanding of how plants capture more water, and postulate that mucilage secretion could be an optimal trait for plant survival during soil drying.


Soil Research ◽  
2015 ◽  
Vol 53 (4) ◽  
pp. 386 ◽  
Author(s):  
C. D. Grant ◽  
P. H. Groenevelt

Water availability to plants growing in coarse-textured soils during a drying cycle relies on the declining abilities of the soil to release water (differential water capacity) and to deliver it to the plant (unsaturated hydraulic conductivity) under varying evaporative demand. In this context, the availability of water can be quantified using the concept of the integral water capacity, IWC, in which the differential water capacity is weighted by means of a restrictive hydraulic function before integrating. We argue here that the diffusivity is an appropriate component of the restrictive hydraulic function, which leads to the employment of the so-called ‘matric flux potential’ (which we propose to re-name as the ‘matric flux transform’). As the starting point to apply the diffusivity function, we choose the inflection point of the water-retention curve drawn on semi-log paper, which, for the Groenevelt–Grant equation, occurs at a matric head, h, of precisely k0 metres. An illustrative example of the procedures is provided for a coarse-textured soil, which reveals that the restrictive function may not be sufficiently restrictive for all cases. We therefore apply an additional weighting coefficient to account for varying sensitivity of different plants to hydraulic restrictions.


2006 ◽  
Vol 43 (8) ◽  
pp. 773-787 ◽  
Author(s):  
M Mbonimpa ◽  
M Aubertin ◽  
B Bussière

The water retention curve (WRC) is often used to define the relative hydraulic conductivity, kr, of unsaturated soils. In this paper, the authors propose the use of the modified Kovács (MK) model, developed to predict the WRC using basic geotechnical properties, combined with some existing statistical models to estimate the kr function. The proposed equations are implemented in MATLAB®. After a preliminary validation based on comparisons with existing solutions, predictive results are presented for granular soils. These indicate a relatively good agreement with experimental results from drainage tests taken from the literature. A discussion follows on the advantages and limitations of the proposed approach.Key words: water retention curve, unsaturated hydraulic conductivity, predictive models, granular soils.


Sign in / Sign up

Export Citation Format

Share Document