scholarly journals The Hydrochemistry and Recent Sediment Geochemistry of Small Lakes of Murmansk, Arctic Zone of Russia

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1130 ◽  
Author(s):  
Zakhar Slukovskii ◽  
Vladimir Dauvalter ◽  
Alina Guzeva ◽  
Dmitry Denisov ◽  
Alexander Cherepanov ◽  
...  

This paper presents the first study of five small lakes located in the city of Murmansk. Field work was carried out during 2018–2019. Water samples were collected using a bathometer, while the sediments were sampled using an Ekman grab and Limnos gravity corer. It was found that the water of the studied lakes in Murmansk belong to the sodium group of the chloride class and to the calcium group of the hydrocarbonate class. Compared to the background level, elevated pH, concentrations of the main cations of alkali and alkaline-earth metals, N compounds, total dissolved solids, and heavy metals were found in the lakes, which indicate exposure to anthropogenic impacts. The sediments of the lakes, composed of organomineral and mineral silts, also have an elevated content of heavy metals compared to the background. The most significant excessive concentrations were found for V, Ni, Sb, Pb, Co, Cr, and W. Based on the calculated pollution load index and geoaccumulation index of the sediments, the studied water bodies in Murmansk can be classified as lakes with heavy and extremely heavy pollution levels. The primary pollution sources are emissions from the Murmansk thermal power plant, coal port, road and, rail transport.

2021 ◽  
Vol 9 (8) ◽  
pp. 899
Author(s):  
Ammar A. Mannaa ◽  
Athar Ali Khan ◽  
Rabea Haredy ◽  
Aaid G. Al-Zubieri

The Al-Salam Lagoon is one of the recreational sites along the Jeddah coast, showing the environmental impacts of urbanization along the coast. A sediment core (220 cm) was collected from the intertidal zone to evaluate the heavy metals (Fe, Mn, Cr, Ni, Cu, Zn, and Pb) and geochemical indices (contamination factor, geo-accumulation index, and pollution load index). In the organ-ic-rich muddy sediments (0–100 cm), there is a high metals content and a pollution load index of ~3, indicting anthropogenic impacts with high Cu contamination (CF:12) and moderate Fe, Mn, Cr, Ni, Zn, and Pb contamination (CF: <3). The organic matter and heavy metals washed through surface run-off from the land and deposited as urban waste. Down the core, consistent metals concentration, CF, and Igeo trends indicate a common pollutant source and pollution load variations over time. In the sediment section (70–40 cm), a high organic matter, metal concentration, CF, Igeo, and PLI value (≥5) suggest an uncontrolled pollution load. The decreased and stable trends of environmental indicators toward surface sediments suggest measures taken to control the pollution along the Jeddah coast. Below 110 cm, the carbonate-rich sediments have low organic matter and metals, showing an unpolluted depositional environment. The negative geo-accumulation index implies a geogenic source and indicates no anthropogenic impacts as inferred from low (~1.0) CF and PLI.


2017 ◽  
Vol 68 (10) ◽  
pp. 2363-2366
Author(s):  
Delia Nica Badea

The paper evaluates the presence and content of traces of heavy metals Hg, Pb, Ni, Cd (total forms) from coal and solid combustion products, the degree of transfer and accessibility in the area of influence of a lignite power plant. The content of toxic heavy metals in residues are characterized by RE Meiji [ 1 (Pb and Hg) and REMeij �1 (Ni and Cd) for the filter ash. Pb and Ni content in the soil exceeds normal values, and Pb exceeds and alert value for sensitive soils around the residue deposit (70.20 mg.Kg-1). The degree of accessibility of the metals in plants (TF), reported at the Khan reference value (0.5), indicates a significant bioaccumulation level for the metals: Cd (1.9) and Hg (0.6) inside the deposit; Cd (0.39) at the base of the deposit, Hg (0.8) in the area of the thermal power plant. The trace levels of heavy metals analyzed by GFAAS and CVAAS (Hg), indicates a moderate risk potential for food safety and quality of life in the studied area.


2008 ◽  
Vol 72 (1) ◽  
pp. 411-413 ◽  
Author(s):  
T. Eskola ◽  
V. Peuraniemi

AbstractLake sediments were studied from four lakes in environmentally different areas in northern Finland. Lakes Pyykösjärvi and Kuivasjärvi are situated near roads with heavy traffic and the city of Oulu. Lakes Martinlampi and Umpilampi are small lakes in a forest area with no immediate human impact nearby. The concentration of Pb increases in the upper parts of the sedimentary columns of Lake Kuivasjärvi and Lake Pyykösjärvi. This is interpreted as being an anthropogenic effect related to heavy traffic in the area and use of Lake Pyykösjärvi as an airport during World War II. High Ni and Zn concentrations in the Lake Umpilampi sediments are caused by weathered black schists. Sediments in Lake Martinlampi show high Pb and Zn contents with increasing Pb concentrations up through the sedimentary column. The sources of these elements are probably Pb-Zn mineralization in the bedrock, Pb-Zn-rich boulders and anomalous Pb and Zn contents in till in the catchment area of the lake.


Author(s):  
Eshetu Shifaw

Background. The concentrations of heavy metals in soil and potential risks to the environment and public health are receiving increased attention in China. Objectives. The objective of this paper is to review and analyze heavy metals soil contamination in urban and agricultural areas and on a national scale in China. Methods. Initially, data on soil heavy metals concentration levels were gathered from previous studies and narratively analyzed. A further statistical analysis was performed using the geo-accumulation index (Igeo), Nemerow integrated pollution index (NIPI), mean, standard deviation (SD), skewness and kurtosis. Pollution levels were calculated and tabulated to illustrate overall spatial variations. In addition, pollution sources, remedial measures and impact of soil contamination as well as limitations are addressed. Results. The concentration level of heavy metals was above the natural background level in most areas of China. The problem was more prevalent in urban soils than agricultural soils. At the national level, the soil in most of the southern provinces and Beijing were heavily polluted. Even though the pollution condition based on Igeo was promising, the Nemerow integrated pollution level was the most worrisome. The soils in about 53% of the provinces were moderately to heavily polluted (NIPI&gt;2). The effects were noticed in terms of both public and ecological health risks. The major sources were waste gas, wastewater, and hazardous residuals from factories and agricultural inputs such as pesticides. Efforts have been made to reduce the concentrations and health risks of heavy metals, including policy interventions, controlling contamination sources, reducing the phytoavailability of heavy metals, selecting and rearing of grain cultivars with low risk of contamination, paddy water and fertilizer management, land use changes, phytoremediation and engineering techniques. Conclusions. China is experiencing rapid economic and technological advancements. This increases the risk of heavy metals contamination of soil. If serious attention is not paid to this problem, soil toxicity and biological accumulation will continue to threaten the sustainability of China's development. Competing Interests. The authors declare no competing financial interests


2015 ◽  
Vol 17 (1) ◽  
pp. 148-161

<div> <p>Two greenhouse pot experiments were conducted in Agrinion, Greece. The impact of treated municipal wastewater (TMWW) and sludge (i) on the growth of <em>Lactuca sativa</em> L. var Longifolia (lettuce) and (ii) on the extent of soil pollution with heavy metals was studied. Soil pollution was assessed by calculating the Pollution Load Index (PLI). Both of these experiments were conducted, using a randomized block design in four replications and seven treatments, respectively, as follows: (a) Experiment A: study of the effect of treated municipal wastewater (TMWW): [Control, 20%, 40%, 60%, 80%, 100%, (100%+30 t/ha Sludge)] and (b) Experiment B: Study of the effect of sludge (t/ha): 0, &nbsp;6, 12,&nbsp; 18, 24 , 30, (30+100%TMWW). The sludge affected significantly plant height and fresh and dry matter yield, as well as the dry matter N content of plants, while the TMWW affected significantly the dry matter yield and non-significantly the plant height. The pollution load index (PLI) was non-significant for both treatments (sludge and TMWW). According to PLI calibration scale, the soil was found to be slightly polluted with heavy metals under both treatments.</p> </div> <p>&nbsp;</p>


2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Fasmi Ahmad

<p>Bangka Island is rich in natural resources particularly tin minerals. The increasing of tin mining has elevated various wastes such as tailings, oil, and fuel coming from the sand scraper tin boat. These wastes containing toxic heavy metals may harmful to marine organism. Measurement of Pb, Cd, Cu, Zn, and Ni were carried out in September 2010. The purpose of this research was to predict the pollution degree of Pb, Cd, Cu, Zn, and Ni in sediment using two different methods namely geoaccumulation index (I_geo) and pollution load index (PLI). The samples of sediments were collected at 20 stations using Gravity Core. The content of heavy metals in all samples was determined using Atomic Absorption Spectrophotometer with a mixture of air and acetylene flame. The results showed that there was a different of prediction on sediment pollution level between Load Pollution Index with Geoaccumulation Index. According to Load Pollution Index, sediments in this waters were not polluted by Pb, Cd, Cu, Zn, and Ni (PLI&lt;1). Based on Geoaccumulation Index, sediment were also not polluted by Pb, Cu, Zn, and Ni (Igeo&lt;0). While for Cd, sediments divided into three categories, namely not polluted (Igeo&lt;0), light polluted (0&lt;Igeo&lt;1), and medium pollued (1&lt;Igeo&lt;2).  The concentration of the heavy metals still lower than that sediment quality guideline values.</p> <p>Keywords: Bangka Island, heavy metals, geoaccumulation index, pollution load index.</p>


2013 ◽  
Vol 67 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Snezana Jaksic ◽  
Savo Vuckovic ◽  
Sanja Vasiljevic ◽  
Nada Grahovac ◽  
Vera Popovic ◽  
...  

Recently, heavy metals concentrations increased in some agricultural areas due to the consequences of anthropogenic impacts. The aim of this study was to determine the level of heavy metals (As, Cr, Ni and Pb) in Medicago sativa L. and Trifolium pratense L. grown on fluvisol, in order to obtain information on safety of these nutrients. The total content of Pb, As, Cr and Ni in the samples of fluvisol was above the maximum allowable amount. The content of heavy metals in Medicago sativa L. and Trifolium pratense L. was below the critical and toxic concentrations in all samples originating from contaminated soil. It was concluded that the accumulation of heavy metals in plants did not depend only on the total content in soil, but also the affinity of the plant, and individual and interactive effects of various soil properties. No statistically significant differences in the accumulation of heavy metals between Medicago sativa L. and Trifolium pratense L were observed. It is necessary to further control of heavy metals in the investigated area, in order to prevent their entry into the food chain and provide healthy food.


2021 ◽  
Author(s):  
Shirin Akter ◽  
Mohammad Obidur Rahman ◽  
Mehedi Hasan ◽  
Saiful Islam Tushar ◽  
Mottalib Hossain Sarkar ◽  
...  

Abstract The mean concentrations of heavy metals viz: K, Ca, Mg, Ti, Fe, Co, Cu, As, Zn, Rb, Sr, Zr, Pb and Th were measured in soil samples using Energy Dispersive X-ray Fluorescence (EDXRF) technique and sampling sites as a whole were found highly contaminated by Zn, considerably contaminated by Mg and Pb, while moderately contaminated by Fe, Co, Cu, Rb, Sr, As, Rb, Y, Th. The sampling sites are moderate to strongly polluted by heavy metals according to Enrichment factors value, whereas, Pollution Load Index values for 95% of the sample sites were ≥ 1.5, indicating deterioration of soil quality. Potential Ecological risk (RI) value followed the increasing sequence of Pb > As > Co > Zn > Cu. Non-carcinogenic exposure found higher in children compared to adults,however carcinogenic risk assessment revealed that both groups (adult and children) lied within Grade II category (10− 5 to 10− 6) and considered to be at no risk.


2021 ◽  
Vol 926 (1) ◽  
pp. 012027
Author(s):  
Irvani ◽  
S Adibrata ◽  
M Yusuf ◽  
M Hudatwi ◽  
A Pamungkas

Abstract Vary heavy metals scattered in suspension loads and re-sedimentation from the tailing of the offshore-alluvial tin mining at Tanah Merah and its surroundings, Central Bangka Regency. Research is needed to determine the type, composition, spatial distribution of heavy metals, and potential pollution. The active surface-sediments were taken from shallow marine systematically around the offshore tin mining area in the east season. Geochemical analysis of sediment using x-ray fluorescence, coupled with minerals and sieve analysis, and support by spatial analysis. These sediments have dominant the sand-size (range very-fine sand to coarse sand) and silt, contained predominantly large quantities of quartz minerals and shell fragments of marine animals. The metals are in the following decreasing order: Cr>Zn>Pb>Ni>Cu>As>Co>Cd. The spatial distribution of heavy metals generally has a relatively south, east, and north position, with concentrations occurring along the coastline and showing the degradation composition towards the open sea. The marine sediments are uncontaminated to moderately contaminated by Cd and Pb, indicate both natural and anthropogenic enrichment, low the pollution load index (PLI), and have various potential ecological risks index (RI) (low to very high RI).


2020 ◽  
Vol 53 (2E) ◽  
pp. 36-61
Author(s):  
Ahmed Al-Obeidi

Soil pollution adversely affects the safety and health of the human being. The main objective of the study is to determine the concentrations of heavy metals (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) in surface soil in Al-Hawija, southwestern Kirkuk. Twenty-one samples were collected and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to measure the content of heavy metals and assess the soil pollution by using the contamination factor, degree of contamination, geoaccumulation index, pollution load index and ecological risk index (RI). The results indicate that there is high pollution by lead, chromium and copper (78.8, 87.4 and 53.8 mg/kg) respectively, in industrial areas due to anthropogenic sources with the presence of significant ecological risk (Er) of the lead (116) in site S7, due to its high concentrations, while size fraction analysis indicated that all heavy metals are concentrated in the fine parts as a result of adsorption processes by clay minerals.


Sign in / Sign up

Export Citation Format

Share Document