scholarly journals Characterizing the Variation of Dissolvable PAHs in Receiving Water in a Reclaimed Water Irrigation Region

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2766
Author(s):  
Yajun Wang ◽  
Binghua Li ◽  
Ying Ma ◽  
Lihu Yang ◽  
Xianfang Song

Long-term wastewater and reclaimed water irrigation systems constitute the major processes in local water circulation, which concomitantly introduce plenty of undesirable substances that can threaten water quality, ecosystem functions and human health. At the Southeast Reclaimed Water Irrigation Region (SRWIR) of Beijing, wastewater irrigation was adopted from 1969 to 2002, and second-treated effluents (reclaimed water) has been used thereafter. Polycyclic aromatic hydrocarbons (PAHs) were the most ubiquitously detected contaminant in wastewater and reclaimed water and are reported to be carcinogenic. Hence, we measured the concentrations of dissolved sixteen United States Environmental Protection Agency (USEPA) priority PAHs in surface water and groundwater at the SRWIR to characterize their spatial and temporal variations, and to clarify the role of reclaimed water to natural water. The concentration of 16 individual PAHs in reclaimed water, rivers and groundwater varied from 339.4 to 636.2 ng/L, 359.1 to 3,435.0 ng/L and 216.5 to 488,205.2 ng/L, respectively. The lower aromatic rings of PAHs prevailed in aquatic environments rather than the higher ones. Thereinto, naphthalene was the predominant isomer within the highest concentration reached to 486,600 µg/L. The groundwater samples had higher PAHs concentrations at Tongzhou district which attributed to the higher vulnerability of aquifer. Additionally, strong correlations between PAHs and total nitrogen, nitrate, dissolved oxygen and electrical conductivity suggested those potential factors affecting the photo degradation and/or biodegradation of PAHs. The relationship identified between PAHs concentrations and physical and chemical indices would help us to enhance the understanding migration and transformation of PAHs spatially and temporally, enable us to assess the potential risks of the environmental pollutants to aquatic organisms and human water supplies.

Author(s):  
Idris Umar Zungum ◽  
Tijjani Sabiu Imam

There is a sustained rise in incidence of cancer and toxicity related to chemicals exerting enormous burden to public health and biodiversity. Polycyclic Aromatic Hydrocarbons (PAHs) are mong such contaminants, precisely the sixteen-priority characterized by United States Environmental Protection Agency (USEPA). Therefore, this review is aimed at further elaboration about the 16 USEPA characterized PAHs and threat portend to public health and biodiversity. PAHs are a class of very stable organic pollutants produced most commonly, by incomplete combustion of fossil fuel and are formed when complex organic substances are exposed to heat. PAHs in great amount due to build up over time by bioaccumulation can be perilous: to human beings of all age and levels, aquatic organisms, amphibians and reptiles. The soil like the aquatic environment contains substantial quantity of PAHs since, atmospheric PAHs sediments on the soil due to dry and wet deposition, terrestrial organism are impacted if the soil is saturated with PAHs. Therefore, PAHs are a great source of trepidation for food safety, public health and biodiversity sustenance. Hence, tackling the spade of the menacing ubiquity of PAHs becomes necessary from its sources by encouragement of alternatives to petroleum fuels for machines and vehicles.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 292 ◽  
Author(s):  
Yuan Tian ◽  
Xilan Feng ◽  
Yuping Zhang ◽  
Quan Yu ◽  
Xiaohao Wang ◽  
...  

Ionic liquids found a wide application in catalysis and extraction due to their unique properties. Herein, ethylene glycol dimethacrylate as the cross-linker and 1-vinyl-3- butylimidazolium tetrafluoroborate as functional monomer via thermally initiated free-radical polymerization was prepared as a novel copolymer solid phase micro-extraction (SPME) coating. A surface modified stainless-steel wire was implemented as the substrate. Factors affecting the extraction performances of the copolymer, including the molar ratio of monomers to cross-linkers, the amount of porogen agent, and polymerization time were evaluated and optimized. To evaluate the extraction performance, five commonly seen polycyclic aromatic hydrocarbons (PAHs) were taken as the analytical targets. The potential factors affecting extraction efficiency were optimized. The as-prepared SPME device, coupled with gas chromatography, was successfully applied for the determination of PAHs in water samples. The wide linear range, low detection limit, good reproducibility, selectivity, and excellent thermal stability indicate the promising application of the newly developed SPME fiber in environmental monitoring as well as in other samples having complex matrices.


1999 ◽  
Vol 34 (1) ◽  
pp. 179-182 ◽  
Author(s):  
Klaus L.E. Kaiser ◽  
John C. Dearden ◽  
Werner Klein ◽  
T. Wayne Schultz

Abstract ECOSAR (1998), a personal computer software program available from the U.S. Environmental Protection Agency (EPA) and affiliated vendors, is used to estimate the toxicity of chemicals to aquatic organisms, particularly fish, daphnid and algae species. It relies on approximately 150 equations, each for a chemical class of substances (Clements et al. 1996), which are linear correlations (SARs) of measured toxicity values of class-representative compounds with their octanol/water partition coefficients, with the latter taken from a database or computed by a companion program.


Author(s):  
Nor Ashikin Sopian ◽  
Juliana Jalaludin ◽  
Suhaili Abu Bakar ◽  
Titi Rahmawati Hamedon ◽  
Mohd Talib Latif

This study aimed to assess the association of exposure to particle-bound (PM2.5) polycyclic aromatic hydrocarbons (PAHs) with potential genotoxicity and cancer risk among children living near the petrochemical industry and comparative populations in Malaysia. PM2.5 samples were collected using a low-volume sampler for 24 h at three primary schools located within 5 km of the industrial area and three comparative schools more than 20 km away from any industrial activity. A gas chromatography–mass spectrometer was used to determine the analysis of 16 United States Environmental Protection Agency (USEPA) priority PAHs. A total of 205 children were randomly selected to assess the DNA damage in buccal cells, employing the comet assay. Total PAHs measured in exposed and comparative schools varied, respectively, from 61.60 to 64.64 ng m−3 and from 5.93 to 35.06 ng m−3. The PAH emission in exposed schools was contributed mainly by traffic and industrial emissions, dependent on the source apportionment. The 95th percentiles of the incremental lifetime cancer risk estimated using Monte Carlo simulation revealed that the inhalation risk for the exposed children and comparative populations was 2.22 × 10−6 and 2.95 × 10−7, respectively. The degree of DNA injury was substantially more severe among the exposed children relative to the comparative community. This study reveals that higher exposure to PAHs increases the risk of genotoxic effects and cancer among children.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3207
Author(s):  
Eirini Chrysochou ◽  
Panagiotis Georgios Kanellopoulos ◽  
Konstantinos G. Koukoulakis ◽  
Aikaterini Sakellari ◽  
Sotirios Karavoltsos ◽  
...  

Cardiovascular diseases (CVDs) have been associated with environmental pollutants. The scope of this study is to assess any potential relation of polycyclic aromatic hydrocarbons (PAHs), their hydroxylated derivatives, and trace elements with heart failure via their direct determination in human serum of Greek citizens residing in different areas. Therefore, we analyzed 131 samples including cases (heart failure patients) and controls (healthy donors), and the respective demographic data were collected. Significantly higher concentrations (p < 0.05) were observed in cases’ serum regarding most of the examined PAHs and their derivatives with phenanthrene, fluorene, and fluoranthene being the most abundant (median of >50 μg L−1). Among the examined trace elements, As, Cd, Cu, Hg, Ni, and Pb were measured at statistically higher concentrations (p < 0.05) in cases’ samples, with only Cr being significantly higher in controls. The potential impact of environmental factors such as smoking and area of residence has been evaluated. Specific PAHs and trace elements could be possibly related with heart failure development. Atmospheric degradation and smoking habit appeared to have a significant impact on the analytes’ serum concentrations. PCA–logistic regression analysis could possibly reveal common mechanisms among the analytes enhancing the hypothesis that they may pose a significant risk for CVD development.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 529
Author(s):  
Wafa Boulajfene ◽  
Montassar Lasram ◽  
Sabiha Zouari-Tlig

This work aims to assess the spatial and temporal variations of four biomarkers activities and to integrate their biological responses in a battery using the gastropod Phorcus turbinatus. The monitoring was carried out during the period between April 2014 and January 2015 at six stations along the northern and the northeastern coasts of Tunisia. The Fulton condition factor was estimated and the activities of catalase, acetylcholinesterase and glutathione-S-transferase were evaluated by spectrophotometry. A multi-biomarker battery approach was used to assess ecosystems’ condition and to identify environmental impacts on the organisms. The results suggest that the enzymatic activities of CAT and GST depend especially on seasons. As for AChE activity, it was similar between seasons and stations. The values of the integrated biological response were maximal at Jarzouna in summer and at Sidi Daoued in winter, indicating the presence of severe stressors suffered by the organisms. This perturbation may be due to the enrichment of the waters by xenobiotics, namely polycyclic aromatic hydrocarbons, insecticides, phosphate wastes, PCBs and pesticides. Thus, P. turbinatus seems to be a good bioindicator of chemical pollution, constituting an adequate tool for a bio-monitoring program.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 108
Author(s):  
Céline Liaud ◽  
Sarah Chouvenc ◽  
Stéphane Le Calvé

The emergence of new super-insulated buildings to reduce energy consumption can lead to a degradation of the indoor air quality. While some studies were carried out to assess the air quality in these super-insulated buildings, they were usually focused on the measurement of gas phase pollutants such as carbon dioxide and volatile organic compounds. This work reports the first measurements of Polycyclic Aromatic Hydrocarbons (PAHs) associated with particles as a function of time and particle size in a low-energy building. The airborne particles were collected indoors and outdoors over three to four days of sampling using two three-stage cascade impactors allowing to sample simultaneously particles with aerodynamic diameter Dae > 10 µm, 2.5 µm < Dae < 10 µm, 1 µm < Dae < 2.5 µm, and Dae < 1 µm. The 16 US-EPA priority PAHs were then extracted and quantified by high-performance liquid chromatography (HPLC) coupled to fluorescence detection. The resulting total particle concentrations were low, in the ranges 3.73 to 9.66 and 0.60 to 8.83 µg m-3 for indoors and outdoors, respectively. Thirteen PAHs were always detected in all the samples. The total PAH concentrations varied between 290 and 415 pg m−3 depending on the particle size, the environment (indoors or outdoors) and the sampling period considered. More interestingly, the temporal variations of individual PAHs highlighted that high molecular weight PAHs were mainly associated to the finest particles and some of them exhibited similar temporal behaviors, suggesting a common emission source. The indoor-to-outdoor concentration ratios of individual PAH were usually found close to or less than 1, except during the event combining rainy conditions and limited indoor ventilation rate.


2014 ◽  
Vol 507 ◽  
pp. 752-756
Author(s):  
Chao Xiang ◽  
Ping Xu ◽  
Jing Wang ◽  
Tao Wang ◽  
Ya Jun Zhang

Some forms of organic matter existing in the water have direct or indirect effects on microbial growth. By the investigation data over drinking water and reclaimed water, we summarized organic limiting factors that may affect the growth of microorganisms and factors affecting these water qualities in the reclaimed water supply network, such as a variety of treatment process and the residual disinfectants. Through its comprehensive study, we want to make a contribution of opinion to control the growth of microorganisms in reclaimed water supply network.


Sign in / Sign up

Export Citation Format

Share Document