scholarly journals Transport of Cu2+ in Unsaturated Porous Medium with Humic Acid/Iron Oxide Nanoparticle (Fe3O4) Amendment

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 200
Author(s):  
Shanshan Lin ◽  
Mengdi Shi ◽  
Qi Wang ◽  
Junlin Yang ◽  
Gubin Zhang ◽  
...  

Humic acid (HA) and iron oxide (such as Fe3O4) nanoparticles are widely distributed in soil, and their complex embedded in soil might affect the transport and fate of Cu2+ in the vadose zone, while Cu2+ is a serious threat to the underlying groundwater. In this study, we synthesized a composite of Fe3O4 nanoparticles coated with HA (HA@NPs) using as an amendment a packed sand matrix in the transport column experiments. The impacts of HA content and ion strength (IS) on Cu2+ transport in the unsaturated columns were investigated. The results showed that HA exhibited a stronger inhibition effect on Cu2+ transport, and a higher IS enhanced the mobility of Cu2+ in an unsaturated porous medium in the presence of HA@NPs. The recovery ratio (Rr) of Cu2+ breakthrough in the column decreased from 66.56% to 3.94% while the mass concentration ratio CHA/CNPs increased from 0 to 50 in the HA@NPs complex. The Rr increased by 1.64 times while the IS increased from 0 to 100 mM. Batch adsorption experiments, kinetics and isotherm models, and Fourier transform infrared (FTIR) spectra analysis were implemented to elucidate the underlying mechanism. It was found that HA embedded in the sand matrix could bind Cu2+ by forming stable chelate, while the IS-dependent Cu2+ transport could be attributed to the competitive adsorption between Na+ and Cu2+. Our study demonstrates that the physicochemical environment, as well as the presence of iron oxide nanoparticles and natural organic matter, can significantly impact Cu2+ transport in unsaturated porous medium.

2015 ◽  
Vol 32 (8) ◽  
pp. 703-712 ◽  
Author(s):  
Ni Liang ◽  
Di Zhang ◽  
Chaoxian Wei ◽  
Hao Li ◽  
Saikat Ghosh ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Aamir Abbas ◽  
Basim Ahmed Abussaud ◽  
Ihsanullah ◽  
Nadhir A. H. Al-Baghli ◽  
Halim Hamid Redhwi

Multiwall carbon nanotubes (CNTs) and iron oxide impregnated carbon nanotubes (CNTs-iron oxide) were investigated for the adsorption of hazardous toluene and paraxylene (p-xylene) from aqueous solution. Pure CNTs were impregnated with iron oxides nanoparticles using wet impregnation technique. Various characterization techniques including thermogravimetric analysis, scanning electron microscopy, elemental dispersion spectroscopy, X-ray diffraction, and nitrogen adsorption analysis were used to study the thermal degradation, surface morphology, purity, and surface area of the materials. Batch adsorption experiments show that iron oxide impregnated CNTs have higher degree of removal of p-xylene (i.e., 90%) compared with toluene (i.e., 70%), for soaking time 2 h, with pollutant initial concentration 100 ppm, at pH 6 and shaking speed of 200 rpm at 25°C. Pseudo-second-order model provides better fitting for the toluene and p-xylene adsorption. Langmuir and Freundlich isotherm models demonstrate good fitting for the adsorption data of toluene and p-xylene.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sharanabasava V. Ganachari ◽  
Veerabhadragouda B. Patil ◽  
Nagaraj R. Banapurmath ◽  
Manzoore Elahi M. Soudagar ◽  
Kiran Shahapurkar ◽  
...  

The aim of the present work is the synthesis and characterization of iron oxide (Fe3O4) nanoparticles. These nanoparticles are coated with oleic acid and polyvinyl butyral and mixed with microspheres and further developed ferrofluids with silicon oil. Studies of the performance of the nanoparticles in these ferrofluids with and without coating agents were carried out. The nanoparticles were synthesized using the chemical co-precipitation technique and coated with oleic acid and polyvinyl butyral, and it further mixed with microsphere ferrofluids and developed using silicon oil. The prepared Fe3O4 nanoparticles and their coated forms of oleic acid and polyvinyl butyral were mixed with microspheres; furthermore, ferrofluids were developed with silicon oil. All forms of these ferrofluids are characterized for morphology and phase purity (SEM, XRD, and FTIR). The iron oxide (Fe3O4) nanoparticles have shown different magnetic properties, differentiating macroscopic iron oxide in suspended particles. The ratio of surface to volume increases along with the decrease in atomic size, essential for assessing the surface morphological properties. The magneto-rheological (MR) fluids were determined, and shear stress of Expancel microsphere mixed iron oxide nanoparticle with and without them was found almost equal. However, the ferrofluid with PVB coated nanoparticles and microspheres emerged as a stable rheological ferrofluid, sustaining high shear stress and low viscosity with increasing shear rate. Also, shear rates up to 650 s−1 have been observed, showing very high shear stress withstanding capacity. The stability and performance of the magnetic colloidal ferrofluids depend on the thermal contribution and the balance between attractive/repulsive interactions.


2012 ◽  
Vol 9 (4) ◽  
pp. 2384-2393 ◽  
Author(s):  
G. Kanthimathi ◽  
P. Kotteeswaran ◽  
P. Thillai Arasu ◽  
P. Govindaraj ◽  
M. Kottaisamy

The synthetic nano iron oxide (SNIO) was synthesized by acid base hydrolysis and characterized by the XRD, SEM and EDAX techniques. Batch adsorption experiments were carried out to study the sorption behaviour of SNIO and commercial activated charcoal (CAC) towards Ni(II) ions as a function of initial concentration of the adsorbate, adsorbent dosage, contact time and pH. The adsorption for Ni(II) is found to be better in acidic pH for both SNIO and CAC. The equilibrium adsorption isotherm data have been tested by applying both Freundlich and Langmuir isotherm models. The Separation factor R was found to be between 0 and 1 for both the adsorbent, it clearly indicates the feasibility of adsorption.


2021 ◽  
Vol 1030 ◽  
pp. 159-168
Author(s):  
Soh Fong Lim ◽  
Nur Amalina Naimah Hamidon ◽  
Sukinah Abdul Karim ◽  
S.N. David Chua ◽  
Bee Huah Lim

This paper presents an alternative utilisation of sago barks from the sago industry. In this study, a sago bark-derived magnetic adsorbent was developed by impregnation with ferric chloride hexahydrate (FeCl3H2O) and carbonisation method. The potential of the sago bark-derived magnetic adsorbent to remove lead ion (Pb2+) and copper ion (Cu2+) from aqueous solution was assessed in a batch system. Adsorption experiments were performed as a function of initial concentration (5.0 – 15.0 mg/L). The magnetic adsorbent displayed good ferromagnetic property which aids the separation of the adsorbent after the decontamination process. The magnetic adsorbent was characterised by Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy embedded with an Energy Dispersive X-ray Spectrometer (SEM-EDX). The FT-IR spectra analysis revealed the surface functional groups of the magnetic adsorbent are C−O−C, C−OH, C− H, −C−C−O, Fe-O, O-H, and C-O. The maximum monolayer adsorption capacities were discovered to be 172.414 and 12500 mg/g for lead and copper ions, respectively. The batch adsorption isotherms were analysed using Langmuir, Freundlich, Jovanovic and Temkin isotherm models. The experimental data perfectly fitted with Langmuir isotherm modelling. The results indicated that the sago bark-derived magnetic adsorbent potentially to be an alternative in replacing more high-priced adsorbents for its application in heavy metal ions removal.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hoang Thu Ha ◽  
Pham Tuan Phong ◽  
Tran Dinh Minh

This work reveals the As(V) adsorption behaviors onto iron oxide (Fe3O4) nanoparticles modified activated carbon (AC), originally developed from biochar (BC), as a green adsorbent denoted by FAC. Since FAC has abundant surface functional groups and a desired porous structure that is favorable for the removal of As(V) in contaminated water, FAC has greatly enhanced the As(V) adsorption capacity of the original BC. Various methods were employed to characterize the FAC characteristics and adsorption mechanism, including pHpzc determination, BET specific surface area, elemental analysis (EA), and scanning electron microscopy (SEM). Results show that the AC surface was successfully modified by iron oxide nanoparticles, enhancing the porosity and specific surface area of original adsorbent. Batch adsorption tests indicated a well-fitted Langmuir model and pseudo-second-order model for As(V) adsorption. Additionally, the highest adsorption capacity (Qmax = 32.57 mg/g) by FAC was higher than previously reported literature reviews. Until now, no article was conducted to research the effect of carbon surface chemistry and texture on As removal from waters. It is required to obtain a rational view of optimal conditions to remove As from contaminated water.


2018 ◽  
Vol 3 (1) ◽  
pp. 13
Author(s):  
Muhammad Ali Zulfikar ◽  
Afdal Bahri ◽  
Muhamad Nasir

<p>The main objective of this study is to investigate the isotherm sorption of humic acid (HA) from aqueous solution onto dual nanofiber PMMA/PVDF. Batch adsorption experiments were carried out using HA solution as an adsorbate under variety of concentration in the range of 50-200 mg/L. The experimental data were analyzed by the Langmuir, Freundlich and Sips models of adsorption. The experimental results indicate that, the adsorption capacity of HA adsorption increases with an increase in the HA concentrations. The adsorption of HA onto dual nanofiber PMMA/PVDF agrees well with the Langmuir isotherm models with the maximum adsorption capacity was found to be 137.40 mg g<sup>-1</sup> at concentration of 100 mg L<sup>-1</sup>.</p>


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Muhammad I. Qureshi ◽  
Faheemuddin Patel ◽  
Nadhir Al-Baghli ◽  
Basim Abussaud ◽  
Bassam S. Tawabini ◽  
...  

The present study reports the use of raw, iron oxide, and aluminum oxide impregnated carbon nanotubes (CNTs) for the adsorption of hexavalent chromium (Cr(VI)) ions from aqueous solution. The raw CNTs were impregnated with 1% and 10% loadings (weight %) of iron oxide and aluminum oxide nanoparticles using wet impregnation technique. The synthesized materials were characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Batch adsorption experiments were performed to assess the removal efficiency of Cr(VI) ions from water and the effects of pH, contact time, adsorbent dosage, and initial concentration of the Cr(VI) ions were investigated. Results of the study revealed that impregnated CNTs achieved significant increase in the removal efficiency of Cr(VI) ions compared to raw CNTs. In fact, both CNTs impregnated with 10% loading of iron and aluminum oxides were able to remove up to 100% of Cr(VI) ions from aqueous solution. Isotherm studies were carried out using Langmuir and Freundlich isotherm models. Adsorption kinetics of Cr(VI) ions from water was found to be well described by the pseudo-second-order model. The results suggest that metallic oxide impregnated CNTs have very good potential application in the removal of Cr(VI) ions from water resulting in better environmental protection.


Author(s):  
M. Smiri ◽  
F. Guey ◽  
H. Chemingui ◽  
A. B. Dekhil ◽  
S. Elarbaoui ◽  
...  

Synthesis, characterization and application of iron oxide nanoparticles have received much attention in recent years due to their interesting chemical and physics properties. Magnetite (Fe3O4) nanoparticles were synthesed by chemical co-precipitation and characterized using X ray diffraction (XDR), Fourier transmission spectroscopy (FT-IR), dynamic light scattering and (DLS). Fe3O4 nanoparticles were successfully removed humic acid (HA) from water. The influence of pH, contact time, adsorbent nanoparticle doses and HA concentrations were analyzed. Maximum HA removal occurred at pH 6 (89.63%), 40 mg.L-1 of Magnetite (88.8%), 0.03g of HA (96.64%) and contact time of 20 min (94.37%). Sorption data fit pseudo-second order kinetics, indicated a chemical adsorption process. The Langmuir, Freundlich and Temkin adsorption isotherm models were applied to describe equilibrium data. Adsorption of HA on magnetite nanoparticles was well described by Temkin model. The maximum adsorption capacity was 128.23 mg.g-1. Fe3O4 nanoparticles were promising potential adsorbents for HA removal from water.


Sign in / Sign up

Export Citation Format

Share Document