scholarly journals Comparison of Online Sensors for Liquid Phase Hydrogen Sulphide Monitoring in Sewer Systems

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1876
Author(s):  
Daneish Despot ◽  
Micaela Pacheco Fernández ◽  
Matthias Barjenbruch

Hydrogen sulfide (H2S) related to wastewater in sewer systems is known for causing significant problems of corrosion and odor nuisance. Sewer systems severely affected by H2S typically rely on online H2S gas sensors for monitoring and control. However, these H2S gas sensors only provide information about the H2S emission potential at the point being monitored, which is sometimes inadequate to design control measures. In this study, a comparison of three market-ready online sensors capable of liquid-phase H2S detection in sewer systems was assessed and compared. Two of the three sensors are based on UV/Vis spectrophotometry, while the other adapted the design and principles of a Clark-type electrochemical microsensor. The H2S measurements of the sensors were statistically compared to a standard laboratory method at first. Following that, the performance of the online sensors was evaluated under realistic sewer conditions using the Berlin Water Company (BWB) research sewer pilot plant. Test applications representing scenarios of typical H2S concentrations found in sulfide-affected sewers and during control measures were simulated. The UV/Vis spectrometers showed that the performance of the sensors was highly dependent on the calibration type and measurements used for deriving the calibration function. The electrochemical sensor showed high sensitivity by responding to alternating anaerobic/anoxic conditions simulated during nitrate dosing. All sensors were prone to measurement disturbances due to high amounts of sanitary solids in wastewater at the study site and required continuous maintenance for reliable measurements. Finally, a summary of the key attributes and limitations of the sensors compared for liquid phase H2S detection is outlined.

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
R. Alexandrescu ◽  
I. Morjan ◽  
A. Tomescu ◽  
C. E. Simion ◽  
M. Scarisoreanu ◽  
...  

Iron/iron oxide-based nanocomposites were prepared by IR laser sensitized pyrolysis ofFe(CO)5and methyl methacrylate (MMA) mixtures. The morphology of nanopowder analyzed by TEM indicated that mainly core-shell structures were obtained. X-ray diffraction techniques evidence the cores as formed mainly by iron/iron oxide crystalline phases. A partially degraded (carbonized) polymeric matrix is suggested for the coverage of the metallic particles. The nanocomposite structure at the variation of the laser density and of the MMA flow was studied. The new materials prepared as thick films were tested for their potential for acting as gas sensors. The temporal variation of the electrical resistance in presence ofNO2, CO, andCO2, in dry and humid air was recorded. Preliminary results show that the samples obtained at higher laser power density exhibit rather high sensitivity towardsNO2detection andNO2selectivity relatively to CO andCO2. An optimum working temperature of200°Cwas found.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 127
Author(s):  
Sachin Navale ◽  
Mehrdad Shahbaz ◽  
Sanjit Manohar Majhi ◽  
Ali Mirzaei ◽  
Hyoun-Woo Kim ◽  
...  

H2S gas is a toxic and hazardous byproduct of the oil and gas industries. It paralyzes the olfactory nerves, with concentrations above 100 ppm, resulting in loss of smell; prolonged inhalation may even cause death. One of the most important semiconducting metal oxides for the detection of H2S is CuxO (x = 1, 2), which is converted to CuxS upon exposure to H2S, leading to a remarkable modulation in the resistance and appearance of an electrical sensing signal. In this review, various morphologies of CuxO in the pristine form, composites of CuxO with other materials, and decoration/doping of noble metals on CuxO nanostructures for the reliable detection of H2S gas are thoroughly discussed. With an emphasis to the detection mechanism of CuxO-based gas sensors, this review presents findings that are of considerable value as a reference.


2021 ◽  
pp. 2-4
Author(s):  
Sujan Narayan Agrawal

It is now a fact that the disease COVID-19 is caused by the virus SARC-CoV-2. This virus is a member of the Coronavridae family and Coronavirinae subfamily. It is an RNA virus. The outer surface of the virus has characteristic projections which are club-shaped or spiked. This gives virion a typical look like the solar corona hence the name coronavirus. These viruses primarily cause respiratory tract infections which may range from mild disease to lethal one. The recent outbreak caused by this virus has posed a great threat to global public health and is now declared a pandemic. It is of vital importance to have a rapid and accurate identication of the pathogenic virus. This will help in selecting appropriate treatment, saving people’s lives, and preventing its spread. The RT-PCR is regarded as the gold standard test for the molecular diagnosis of this viral infection. It has got high sensitivity and specicity. This review summarises the characteristics of the virus and the laboratory method of its detection by RT-PCR.


2017 ◽  
Vol 5 (38) ◽  
pp. 9943-9951 ◽  
Author(s):  
Xubin Zheng ◽  
Ruiqing Fan ◽  
Yang Song ◽  
Ani Wang ◽  
Kai Xing ◽  
...  

A novel probe, designed and prepared through PSM of Cu-MOFs and Tb3+ions, shows high sensitivity and selectivity for H2S.


2019 ◽  
Vol 19 (3) ◽  
pp. 976-981
Author(s):  
Kihyun Kim ◽  
Hyeon-Tak Kwak ◽  
Hyeonsu Cho ◽  
M. Meyyappan ◽  
Chang-Ki Baek

2021 ◽  
Author(s):  
Zhen Wang ◽  
Hui Zhang ◽  
Qiang Wang ◽  
Simone Borri ◽  
Iacopo Galli ◽  
...  

Abstract Gas sensors with high sensitivity, wide dynamic range, high selectivity, fast response, and small footprint are desirable across a broad range of applications in energy, environment, safety, and public health. However, designing a compact gas sensor with ultra-high sensitivity and ultra-wide dynamic range remains a challenge. Laser-based photoacoustic spectroscopy (PAS) is a promising candidate to fill this gap. Herein, we report a novel method to simultaneously enhance the acoustic and light waves for PAS using integrated optical and acoustic resonators. This increases sensitivity by more than two orders of magnitude and extends the dynamic range by more than three orders of magnitude, compared with the state-of-the-art photoacoustic gas sensors. We demonstrate the concept by exploiting a near-infrared absorption line of acetylene (C2H2) at 1531.59 nm, achieving a detection limit of 0.5 parts-per-trillion (ppt), a noise equivalent absorption (NEA) of 5.7×10-13 cm-1 and a linear dynamic range of eight orders of magnitude. This study enables the realization of compact ultra-sensitive and ultra-wide-dynamic-range gas sensors in a number of different fields.


2010 ◽  
Vol 10 (7) ◽  
pp. 1180-1184 ◽  
Author(s):  
Teresa Pinheiro-Ortega ◽  
Enrique Silvestre ◽  
Pedro Andres ◽  
Bjorn Maes ◽  
Peter Bienstman
Keyword(s):  

2021 ◽  
Author(s):  
Guanli Fan ◽  
Xiaorong Gao ◽  
Shuling Xu ◽  
Qi Zhanf ◽  
Xia Li ◽  
...  

Developing sensing platforms that simultaneously integrate high sensitivity and accuracy has been a promising but challenging task for protein biomarkers in clinical samples. Herein, we engineered an Au nanostar-based liquid...


Sign in / Sign up

Export Citation Format

Share Document