scholarly journals Avocado cv. Hass Needs Water Irrigation in Tropical Precipitation Regime: Evidence from Colombia

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1942
Author(s):  
Edwin Erazo-Mesa ◽  
Joaquín Guillermo Ramírez-Gil ◽  
Andrés Echeverri Sánchez

The primary natural source of water for the Hass avocado crop in the tropics is precipitation. However, this is insufficient to provide most crops’ water requirements due to the spatial and temporal variability. This study aims to demonstrate that Hass avocado requires irrigation in Colombia, and this is done by analyzing the dynamics of local precipitation regimes and the influence of Intertropical Convergence Zone phenomena (ITCZ) on the irrigation requirement (IR). This study was carried out in Colombia’s current and potential Hass avocado production zones (PPA) by computing and mapping the monthly IR, and classifying months found to be in deficit and excess. The influence of ITCZ on IR by performing a metric relevance analysis on weights of optimized Artificial Neural Networks was computed. The water deficit map illustrates a 99.8% of PPA requires water irrigation at least one month a year. The movement of ITCZ toward latitudes far to those where PPA is located between May to September decreases precipitation and consequently increases the IR area of Hass avocado. Water deficit visualization maps could become a novel and powerful tool for Colombian farmers when scheduling irrigation in those months and periods identified in these maps.

2018 ◽  
Vol 18 (10) ◽  
pp. 7439-7452 ◽  
Author(s):  
Xiaokang Wu ◽  
Huang Yang ◽  
Darryn W. Waugh ◽  
Clara Orbe ◽  
Simone Tilmes ◽  
...  

Abstract. The seasonal and interannual variability of transport times from the northern midlatitude surface into the Southern Hemisphere is examined using simulations of three idealized “age” tracers: an ideal age tracer that yields the mean transit time from northern midlatitudes and two tracers with uniform 50- and 5-day decay. For all tracers the largest seasonal and interannual variability occurs near the surface within the tropics and is generally closely coupled to movement of the Intertropical Convergence Zone (ITCZ). There are, however, notable differences in variability between the different tracers. The largest seasonal and interannual variability in the mean age is generally confined to latitudes spanning the ITCZ, with very weak variability in the southern extratropics. In contrast, for tracers subject to spatially uniform exponential loss the peak variability tends to be south of the ITCZ, and there is a smaller contrast between tropical and extratropical variability. These differences in variability occur because the distribution of transit times from northern midlatitudes is very broad and tracers with more rapid loss are more sensitive to changes in fast transit times than the mean age tracer. These simulations suggest that the seasonal–interannual variability in the southern extratropics of trace gases with predominantly NH midlatitude sources may differ depending on the gases' chemical lifetimes.


2013 ◽  
Vol 26 (12) ◽  
pp. 4121-4137 ◽  
Author(s):  
Ivana Cvijanovic ◽  
Peter L. Langen ◽  
Eigil Kaas ◽  
Peter D. Ditlevsen

Abstract In this study, southward intertropical convergence zone (ITCZ) shifts are investigated in three different scenarios: Northern Hemispheric cooling, Southern Hemispheric warming, and a bipolar seesaw-like forcing that combines the latter two. The experiments demonstrate the mutual effects that northern- and southern-high-latitude forcings exert on tropical precipitation, suggesting a time-scale-dependent dominance of northern versus southern forcings. In accordance with this, two-phase tropical precipitation shifts are suggested, involving a fast component dominated by the high-northern-latitude forcing and a slower component due to the southern-high-latitude forcing. The results may thus be useful for the future understanding and interpretation of high-resolution tropical paleoprecipitation proxies and their relation to high-latitude records (e.g., ice core data). The experiments also show that Southern Ocean warming has a global impact, affecting both the tropics and northern extratropics, as seen in a southward ITCZ shift and mid- and high-latitude North Atlantic surface temperature and wind changes. In terms of dynamical considerations, the tropical circulation response to high-latitude forcing is found to be nonlinear: the atmospheric heat transport and Hadley cell anomalies differ significantly (in magnitude) when comparing the warming and cooling experiments. These are related to different interhemispheric temperature gradients that are altered mainly by nonlinearities in water vapor response. Decomposition of the top-of-the-atmosphere flux response into atmospheric feedback effects shows the dominance of water vapor and cloud feedbacks in the tropics, with the longwave cloud feedback effect governing the overall cloud response.


2016 ◽  
Vol 13 (11) ◽  
pp. 3343-3357 ◽  
Author(s):  
Zun Yin ◽  
Stefan C. Dekker ◽  
Bart J. J. M. van den Hurk ◽  
Henk A. Dijkstra

Abstract. Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might closely relate to woody cover due to vegetation–climate interactions. Thus we expect that use of radiation and above-ground biomass enables us to distinguish the two modes of woody cover. However, through conditional histogram analysis, we find that the bimodality of woody cover still can exist under conditions of low mean annual shortwave radiation and low above-ground biomass. It suggests that this specific condition might play a key role in critical transitions between the two modes, while under other conditions no bimodality was found. Based on a land cover map in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water–radiation coupling are analysed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not sufficient to predict potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators cannot predict a stable forest state under the observed climatic conditions, in contrast to observed forest states. A new indicator (the normalized difference of precipitation) successfully expresses the stability of the precipitation regime and can improve the prediction accuracy of forest states. Next we evaluate land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are revealed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility of decreasing significantly. An increase in the area covered by savanna and grass is possible, which coincides with the observed regreening of the Sahara.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Katrina Nilsson-Kerr ◽  
Pallavi Anand ◽  
Philip B. Holden ◽  
Steven C. Clemens ◽  
Melanie J. Leng

AbstractMost of Earth’s rain falls in the tropics, often in highly seasonal monsoon rains, which are thought to be coupled to the inter-hemispheric migrations of the Inter-Tropical Convergence Zone in response to the seasonal cycle of insolation. Yet characterization of tropical rainfall behaviour in the geologic past is poor. Here we combine new and existing hydroclimate records from six large-scale tropical regions with fully independent model-based rainfall reconstructions across the last interval of sustained warmth and ensuing climate cooling between 130 to 70 thousand years ago (Marine Isotope Stage 5). Our data-model approach reveals large-scale heterogeneous rainfall patterns in response to changes in climate. We note pervasive dipole-like tropical precipitation patterns, as well as different loci of precipitation throughout Marine Isotope Stage 5 than recorded in the Holocene. These rainfall patterns cannot be solely attributed to meridional shifts in the Inter-Tropical Convergence Zone.


AbstractPrecipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard Profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.


2010 ◽  
Vol 27 (3) ◽  
pp. 457-469 ◽  
Author(s):  
M. R. P. Sapiano ◽  
J. E. Janowiak ◽  
P. A. Arkin ◽  
H. Lee ◽  
T. M. Smith ◽  
...  

Abstract The longest record of precipitation estimated from satellites is the outgoing longwave radiation (OLR) precipitation index (OPI), which is based on polar-orbiting infrared observations from the Advanced Very High Resolution Radiometer (AVHRR) instrument that has flown onboard successive NOAA satellites. A significant barrier to the use of these data in studies of the climate of tropical precipitation (among other things) is the large bias caused by orbital drift that is present in the OLR data. Because the AVHRR instruments are deployed on the polar-orbiting spacecraft, OLR observations are recorded at specific times for each earth location for each day. Discontinuities are caused by the use of multiple satellites with different observing times as well as the orbital drift that occurs throughout the lifetime of each satellite. A regression-based correction is proposed based solely on the equator crossing time (ECT). The correction allows for separate means for each satellite as well as separate coefficients for each satellite ECT. The correction is calculated separately for each grid box but is applied only at locations where the correction is correlated with the OLR estimate. Thus, the correction is applied only where deemed necessary. The OPI is used to estimate precipitation from the OLR estimates based on the new corrected version of the OLR, the uncorrected OLR, and two earlier published corrected versions. One of the earlier corrections is derived by removing variations from AVHRR based on EOFs that are identified as containing spurious variations related to the ECT bias, whereas the other is based on OLR estimates from the High Resolution Infrared Radiation Sounder (HIRS) that have been corrected using diurnal models for each grid box. The new corrected version is shown to be free of nearly all of the ECT bias and has the lowest root mean square difference when compared to gauges and passive microwave estimates of precipitation. The EOF-based correction fails to remove all of the variations related to the ECT bias, whereas the correction based on HIRS removes much of the bias but appears to introduce erroneous trends caused by the water vapor signal to which these data are sensitive. The new correction for AVHRR OLR works well in the tropics where the OPI has the most skill, but users should be careful when interpreting trends outside this region.


2020 ◽  
Vol 148 (12) ◽  
pp. 4747-4765
Author(s):  
Nicholas J. Weber ◽  
Clifford F. Mass ◽  
Daehyun Kim

AbstractMonthlong simulations targeting four Madden–Julian oscillation events made with several global model configurations are verified against observations to assess the roles of grid spacing and convective parameterization on the representation of tropical convection and midlatitude forecast skill. Specifically, the performance of a global convection-permitting model (CPM) configuration with a uniform 3-km mesh is compared to that of a global 15-km mesh with and without convective parameterization, and of a variable-resolution “channel” simulation using 3-km grid spacing only in the tropics with a scale-aware convection scheme. It is shown that global 3-km simulations produce realistic tropical precipitation statistics, except for an overall wet bias and delayed diurnal cycle. The channel simulation performs similarly, although with an unrealistically higher frequency of heavy rain. The 15-km simulations with and without cumulus schemes produce too much light and heavy tropical precipitation, respectively. Without convection parameterization, the 15-km global model produces unrealistically abundant, short-lived, and intense convection throughout the tropics. Only the global CPM configuration is able to capture eastward-propagating Madden–Julian oscillation events, and the 15-km runs favor stationary or westward-propagating convection organized at the planetary scale. The global 3-km CPM exhibits the highest extratropical forecast skill aloft and at the surface, particularly during week 3 of each hindcast. Although more cases are needed to confirm these results, this study highlights many potential benefits of using global CPMs for subseasonal forecasting. Furthermore, results show that alternatives to global convection-permitting resolution—using coarser or spatially variable resolution—feature compromises that may reduce their predictive performance.


2008 ◽  
Vol 4 (6) ◽  
pp. 1289-1317 ◽  
Author(s):  
D.-D. Rousseau ◽  
N. Wu ◽  
Y. Pei ◽  
F. Li

Abstract. Chinese loess sequences are interpreted as a reliable record of the past variation of the East Asian monsoon regime through the alternation of loess and paleosols units, dominated by the winter and summer monsoon, respectively. Different proxies have been used to describe this system, mostly geophysical, geochemical or sedimentological. Terrestrial mollusks are also a reliable proxy of past environmental conditions and are often preserved in large numbers in loess deposits. The analysis of the mollusk remains in the Luochuan sequence, comprising L5 loess to S0 soil, i.e. the last 500 ka, shows that for almost all identified species, the abundance is higher at the base of the interval (L5 to L4) than in the younger deposits. Using the present ecological requirements of the identified mollusk species in the Luochuan sequence allows the definition of two main mollusk groups varying during the last 500 kyr. The cold-aridiphilous individuals indicate the so-called Asian winter monsoon regime and predominantly occur during glacials, when dust is deposited. The thermal-humidiphilous mollusks are prevalent during interglacial or interstadial conditions of the Asian summer monsoon, when soil formation takes place. In the sequence, three events with exceptionally high abundance of the Asian summer monsoon indicators are recorded during the L5, L4 and L2 glacial intervals, i.e., at about 470, 360 and 170 kyr, respectively. The L5 and L4 events appear to be the strongest (high counts). Similar variations have also been identified in the Xifeng sequence, distant enough from Luochuan, but also in Lake Baikal further North, to suggest that this phenomenon is regional rather than local. The indicators of the summer monsoon within the glacial intervals imply a strengthened East-Asian monsoon interpreted as corresponding to marine isotope stages 6, 10 and 12, respectively. The L5 and L2 summer monsoons are coeval with Mediterranean sapropels S12 and S6, which characterize a strong African summer monsoon with relatively low surface water salinity in the Indian Ocean. Changes in the precipitation regime could correspond to a response to a particular astronomical configuration (low obliquity, low precession, summer solstice at perihelion) leading to an increased summer insolation gradient between the tropics and the high latitudes and resulting in enhanced atmospheric water transport from the tropics to the African and Asian continents. However, other climate drivers such as reorganization of marine and atmospheric circulations, tectonic, and the extent of the Northern Hemisphere ice sheet are also discussed.


2020 ◽  
Vol 33 (15) ◽  
pp. 6689-6705
Author(s):  
David Coppin ◽  
Gilles Bellon ◽  
Alexander Pletzer ◽  
Chris Scott

AbstractWe propose an algorithm to detect and track coastal precipitation systems and we apply it to 18 years of the high-resolution (8 km and 30 min) Climate Prediction Center CMORPH precipitation estimates in the tropics. Coastal precipitation in the Maritime Continent and Central America contributes to up to 80% of the total rainfall. It also contributes strongly to the diurnal cycle over land with the largest contribution from systems lasting between 6 and 12 h and contributions from longer-lived systems peaking later in the day. While the diurnal cycle of coastal precipitation is more intense over land in the summer hemisphere, its timing is independent of seasons over both land and ocean because the relative contributions from systems of different lifespans are insensitive to the seasonal cycle. We investigate the hypothesis that coastal precipitation is enhanced prior to the arrival of the Madden–Julian oscillation (MJO) envelope over the Maritime Continent. Our results support this hypothesis and show that, when considering only coastal precipitation, the diurnal cycle appears reinforced even earlier over islands than previously reported. We discuss the respective roles of coastal and large-scale precipitation in the propagation of the MJO over the Maritime Continent. We also document a shift in diurnal cycle with the phases of the MJO, which results from changes in the relative contributions of short-lived versus long-lived coastal systems.


2012 ◽  
Vol 12 (5) ◽  
pp. 1493-1501 ◽  
Author(s):  
D. S. Martins ◽  
T. Raziei ◽  
A. A. Paulo ◽  
L. S. Pereira

Abstract. The spatial variability of precipitation and drought are investigated for Portugal using monthly precipitation from 74 stations and minimum and maximum temperature from 27 stations, covering the common period of 1941–2006. Seasonal precipitation and the corresponding percentages in the year, as well as the precipitation concentration index (PCI), was computed for all 74 stations and then used as an input matrix for an R-mode principal component analysis to identify the precipitation patterns. The standardized precipitation index at 3 and 12 month time scales were computed for all stations, whereas the Palmer Drought Severity Index (PDSI) and the modified PDSI for Mediterranean conditions (MedPDSI) were computed for the stations with temperature data. The spatial patterns of drought over Portugal were identified by applying the S-mode principal component analysis coupled with varimax rotation to the drought indices matrices. The result revealed two distinct sub-regions in the country relative to both precipitation regimes and drought variability. The analysis of time variability of the PC scores of all drought indices allowed verifying that there is no linear trend indicating drought aggravation or decrease. In addition, the analysis shows that results for SPI-3, SPI-12, PDSI and MedPDSI are coherent among them.


Sign in / Sign up

Export Citation Format

Share Document