Evaluation of GPROF V05 Precipitation Retrievals under Different Cloud Regimes

AbstractPrecipitation retrievals from passive microwave satellite observations form the basis of many widely used precipitation products, but the performance of the retrievals depends on numerous factors such as surface type and precipitation variability. Previous evaluation efforts have identified bias dependence on precipitation regime, which may reflect the influence on retrievals of recurring factors. In this study, the concept of a regime-based evaluation of precipitation from the Goddard Profiling (GPROF) algorithm is extended to cloud regimes. Specifically, GPROF V05 precipitation retrievals under four different cloud regimes are evaluated against ground radars over the United States. GPROF is generally able to accurately retrieve the precipitation associated with both organized convection and less organized storms, which collectively produce a substantial fraction of global precipitation. However, precipitation from stratocumulus systems is underestimated over land and overestimated over water. Similarly, precipitation associated with trade cumulus environments is underestimated over land, while biases over water depend on the sensor’s channel configuration. By extending the evaluation to more sensors and suppressed environments, these results complement insights previously obtained from precipitation regimes, thus demonstrating the potential of cloud regimes in categorizing the global atmosphere into discrete systems.

2008 ◽  
Vol 21 (17) ◽  
pp. 4348-4364 ◽  
Author(s):  
Christian Jakob ◽  
Courtney Schumacher

Abstract An objective tropical cloud regime classification based on daytime averaged cloud-top pressure and optical thickness information from the International Satellite Cloud Climatology Project (ISCCP) is combined with precipitation and latent heating characteristics derived using the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). TRMM precipitation information is stratified into the ISCCP regimes in the tropical western Pacific (TWP), revealing the following three major precipitation regimes: a heavy (12 mm day−1) precipitation regime dominated by stratiform precipitation and top-heavy latent heating; a regime with moderate (5 mm day−1) precipitation amounts, mostly convective in nature with more midlevel latent heating; and a low (2 mm day−1) precipitation regime with a relatively large rain contribution from shallow convection, compared to the other regimes. Although three of the ISCCP cloud regimes are linked to the more convective, moderate precipitation regime, only one of the cloud regimes is associated with the more stratiform, top-heavy latent heating regime, making the ISCCP regimes a potentially useful tool for the further study of this dynamically important tropical weather state. Similarly, only one cloud regime is associated with the more shallow convective precipitation regime. In terms of the TWP, precipitation and latent heating are dominated by the relatively infrequent (15%) occurrence of the strongly precipitating top-heavy latent heating state and by the frequent (>30%) occurrence of one of the more moderately precipitating convective states. The low precipitation/shallow cumulus regime occurs often (i.e., 25% of the time) but does not contribute strongly to the overall precipitation and latent heating. Each of these regimes also shows distinct geographical patterns in the TWP, thus providing insight into the distribution of convective and stratiform rain across the tropics. This study confirms the potential usefulness of the objective regime classification based on ISCCP, and it opens several new avenues for studying the interaction of convection with the large-scale tropical circulation.


2016 ◽  
Vol 13 (11) ◽  
pp. 3343-3357 ◽  
Author(s):  
Zun Yin ◽  
Stefan C. Dekker ◽  
Bart J. J. M. van den Hurk ◽  
Henk A. Dijkstra

Abstract. Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might closely relate to woody cover due to vegetation–climate interactions. Thus we expect that use of radiation and above-ground biomass enables us to distinguish the two modes of woody cover. However, through conditional histogram analysis, we find that the bimodality of woody cover still can exist under conditions of low mean annual shortwave radiation and low above-ground biomass. It suggests that this specific condition might play a key role in critical transitions between the two modes, while under other conditions no bimodality was found. Based on a land cover map in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water–radiation coupling are analysed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not sufficient to predict potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators cannot predict a stable forest state under the observed climatic conditions, in contrast to observed forest states. A new indicator (the normalized difference of precipitation) successfully expresses the stability of the precipitation regime and can improve the prediction accuracy of forest states. Next we evaluate land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are revealed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility of decreasing significantly. An increase in the area covered by savanna and grass is possible, which coincides with the observed regreening of the Sahara.


2018 ◽  
Vol 57 (3) ◽  
pp. 675-694 ◽  
Author(s):  
Katja Trachte ◽  
Jochen Seidel ◽  
Rafael Figueroa ◽  
Marco Otto ◽  
Joerg Bendix

AbstractSpatiotemporal precipitation patterns were investigated on the western slopes of the central Andes Mountains by applying EOF and cluster analysis as well as the Weather Research and Forecasting (WRF) Model. In the semiarid catchment area in the highlands of Lima, Peru, the precipitation is assumed to be a cross-scale interplay of large-scale dynamics, varying sea surface temperatures (SSTs), and breeze-dominated slope flows. The EOF analysis was used to encompass and elucidate the upper-level circulation patterns dominating the transport of moisture. To delineate local precipitation regimes, a partitioning cluster analysis was carried out, which additionally should illustrate local effects such as the altitudinal gradient of the Andes. The results demonstrated that especially during the transition to the dry season, synoptic-scale circulation aloft controls the precipitation (correlation coefficients between 0.6 and 0.9), whereas in the remaining seasons the slope breezes due to the altitudinal gradient mainly determine the precipitation behavior. Further analysis with regard to the spatiotemporal precipitation variability revealed an inversion of the precipitation distribution along the elevational gradient within the study area, mainly during February (29%) and March (35%), that showed correlations with coastal SST patterns ranging between 0.56 and 0.67. WRF simulations of the underlying mechanisms disclosed that the large-scale circulation influences the thermally induced upslope flows while the strength of southeastern low-level winds related to the coastal SSTs caused a blocking of easterlies in the middle troposphere through a reduced anticyclonic effect. This interplay enables the generation of precipitation in the usually drier environment at lower elevations, which leads to a decrease in rainfall with increasing elevation.


2018 ◽  
Vol 19 (4) ◽  
pp. 643-658 ◽  
Author(s):  
Paul X. Flanagan ◽  
Jeffrey B. Basara ◽  
Jason C. Furtado ◽  
Xiangming Xiao

Abstract Precipitation variability has increased in recent decades across the Great Plains (GP) of the United States. Drought and its associated drivers have been studied in the GP region; however, periods of excessive precipitation (pluvials) at seasonal to interannual scales have received less attention. This study narrows this knowledge gap with the overall goal of understanding GP precipitation variability during pluvial periods. Through composites of relevant atmospheric variables from the ECMWF twentieth-century reanalysis (ERA-20C), key differences between southern Great Plains (SGP) and northern Great Plains (NGP) pluvial periods are highlighted. The SGP pluvial pattern shows an area of negative height anomalies over the southwestern United States with wind anomalies consistent with frequent synoptic wave passages along a southward-shifted North Pacific jet. The NGP pattern during pluvial periods, by contrast, depicts anomalously low heights in the northwestern United States and an anomalously extended Pacific jet. Analysis of daily heavy precipitation events reveals the key drivers for these pluvial events, namely, an east–west height gradient and associated stronger poleward moisture fluxes. Therefore, the results show that pluvial years over the GP are likely driven by synoptic-scale processes rather than by anomalous seasonal precipitation driven by longer time-scale features. Overall, the results present a possible pathway to predicting the occurrence of pluvial years over the GP and understanding the causes of GP precipitation variability, potentially mitigating the threats of water scarcity and excesses for the public and agricultural sectors.


2015 ◽  
Vol 17 (1) ◽  
pp. 383-400 ◽  
Author(s):  
Chris Kidd ◽  
Toshihisa Matsui ◽  
Jiundar Chern ◽  
Karen Mohr ◽  
Chris Kummerow ◽  
...  

Abstract The estimation of precipitation across the globe from satellite sensors provides a key resource in the observation and understanding of our climate system. Estimates from all pertinent satellite observations are critical in providing the necessary temporal sampling. However, consistency in these estimates from instruments with different frequencies and resolutions is critical. This paper details the physically based retrieval scheme to estimate precipitation from cross-track (XT) passive microwave (PM) sensors on board the constellation satellites of the Global Precipitation Measurement (GPM) mission. Here the Goddard profiling algorithm (GPROF), a physically based Bayesian scheme developed for conically scanning (CS) sensors, is adapted for use with XT PM sensors. The present XT GPROF scheme utilizes a model-generated database to overcome issues encountered with an observational database as used by the CS scheme. The model database ensures greater consistency across meteorological regimes and surface types by providing a more comprehensive set of precipitation profiles. The database is corrected for bias against the CS database to ensure consistency in the final product. Statistical comparisons over western Europe and the United States show that the XT GPROF estimates are comparable with those from the CS scheme. Indeed, the XT estimates have higher correlations against surface radar data, while maintaining similar root-mean-square errors. Latitudinal profiles of precipitation show the XT estimates are generally comparable with the CS estimates, although in the southern midlatitudes the peak precipitation is shifted equatorward while over the Arctic large differences are seen between the XT and the CS retrievals.


2006 ◽  
Vol 7 (5) ◽  
pp. 1164-1171 ◽  
Author(s):  
Anne W. Nolin ◽  
Christopher Daly

Abstract One of the most visible and widely felt impacts of climate warming is the change (mostly loss) of low-elevation snow cover in the midlatitudes. Snow cover that accumulates at temperatures close to the ice-water phase transition is at greater risk to climate warming than cold climate snowpacks because it affects both precipitation phase and ablation rates. This study maps areas in the Pacific Northwest region of the United States that are potentially at risk of converting from a snow-dominated to a rain-dominated winter precipitation regime, under a climate-warming scenario. A data-driven, climatological approach of snow cover classification is used to reveal these “at risk” snow zones and also to examine the relative frequency of warm winters for the region. For a rain versus snow temperature threshold of 0°C the at-risk snow class covers an area of about 9200 km2 in the Pacific Northwest region and represents approximately 6.5 km3 of water. Many areas of the Pacific Northwest would see an increase in the number of warm winters, but the impacts would likely be concentrated in the Cascade and Olympic Ranges. A number of lower-elevation ski areas could experience negative impacts because of the shift from winter snows to winter rains. The results of this study point to the potential for using existing datasets to better understand the potential impacts of climate warming.


2010 ◽  
Vol 23 (16) ◽  
pp. 4327-4341 ◽  
Author(s):  
Philip J. Pegion ◽  
Arun Kumar

Abstract A set of idealized global model experiments was performed by several modeling centers as part of the Drought Working Group of the U.S. Climate Variability and Predictability component of the World Climate Research Programme (CLIVAR). The purpose of the experiments was to assess the role of the leading modes of sea surface temperature (SST) variability on the climate over the continents, with particular emphasis on the influence of SSTs on surface climate variability and droughts over the United States. An analysis based on several models gives more creditability to the results since it relies on the assessment of impacts that are robust across different models. Coordinated atmospheric general circulation model (AGCM) simulations forced with three modes of SST variability were analyzed. The results show that the SST-forced precipitation variability over the central United States is dominated by the SST mode with maximum loading in the central Pacific Ocean. The SST mode with loading in the Atlantic Ocean, and a mode that is dominated by trends in SSTs, lead to a smaller response. Based on the response to the idealized SSTs, the precipitation response for the twentieth century was also reconstructed. A comparison with the Atmospheric Model Intercomparison Project (AMIP) simulations forced with the observed SSTs illustrates that the reconstructed precipitation variability was similar to the one in the AMIP simulations, further supporting the conclusion that the SST modes identified in the present analysis play a dominant role in the precipitation variability over the United States. One notable exception is the Dust Bowl of the 1930s, and further analysis regarding this major climate extreme is discussed.


2016 ◽  
Vol 29 (14) ◽  
pp. 5157-5173 ◽  
Author(s):  
Scott J. Weaver ◽  
Stephen Baxter ◽  
Kirstin Harnos

Abstract Intensification of regional springtime precipitation variability over the United States and the role of North American low-level jets (NALLJs) are investigated for the 1950–2010 period. The analysis reveals that the primary modes of NALLJ fluctuations are related to the strengthening of AMJ precipitation variability over the northern Great Plains and southeastern United States during the last 60 years. Examination of the epochal change in NALLJ variations shows a stronger connectivity to SST variability during 1980–2010 than in the 1950–79 period. In the context of the first three NALLJ variability modes it appears that the role of decadal SST variations (NALLJ mode 1) and the recent emergence of tropical Pacific connectivity (NALLJ modes 1 and 2) via SST-induced atmospheric heating and large-scale circulation changes may act to strengthen and spatially shift the NALLJ variability modes southward and/or eastward, intensifying regional precipitation variability in the recent epoch. Although notable NALLJ variability also exists in the earlier epoch, the upper-level height field is significantly lacking in meridional gradients, leading to weak upper-level zonal wind anomalies over the United States and diminished NALLJ variability. Conversely, the intensified and spatially shifted upper-level height anomaly in the recent epoch produces enhanced meridional height gradients in all three modes, strengthening NALLJ variability—highlighting that seemingly subtle shifts in hemispheric-scale atmospheric circulation changes can have important impacts on regional climate variability and change.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8476
Author(s):  
Ying Wang ◽  
Jiawei Chen ◽  
Yige Huang ◽  
Zhongsheng Mu ◽  
Changfu Wang

Precipitation regime and seedling emergence time both influence plant growth and reproduction. However, little attention has been given to the effects of these combined factors on the reproductive strategy of Chloris virgata, which is a vital species in Songnen grassland. Here, we simulated the changes in the precipitation regime and seedling emergence time to evaluate tiller traits and seed production. The results showed that tiller number behaved similarly among three precipitation regimes when sowed on 15 May (T1), while it increased significantly with precipitation regimes when sowed on 15 June (T2) and 15 July (T3). Tiller number decreased significantly with the seedling emergence time under the same water supply treatment. The proportional allocation of reproductive tiller number to total tiller number was significantly higher at T3 than at T1 and T2. Seed number remained similar under different precipitation regimes at T2 and T3, whereas it was significantly lower under low precipitation than under other water levels at T1. Seed number reached the maximum values at T2 under the same level of precipitation treatment. Seed size was significantly lower under low precipitation compared to other water supply treatments and the lowest values in seed size, about 0.5 mg, occurred at T2 under all the precipitation regimes. The lowest values in spike number were under low precipitation at all seedling emergence times. Seed yield exhibited similar trends with seed size under different precipitation regimes, while the greatest gains in these values were at T1 under all the precipitation regimes. Our findings showed that simulated precipitation regimes and seedling emergence time affected the reproductive strategy of C. virgata. Typical and high precipitation, as well as early seedling emergence, will improve the seed yield and seed quality in this species.


Sign in / Sign up

Export Citation Format

Share Document