scholarly journals Dealing with the Understanding of the Dynamics Related to Multifactorial Temporal Interactions That Spatially Affect the Landscape of Coastal Lagoons

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2099
Author(s):  
Ana I. Casarrubias-Jaimez ◽  
Ana Laura Juárez-López ◽  
Efraín Tovar-Sánchez ◽  
José Luis Rosas-Acevedo ◽  
Maximino Reyes-Umaña ◽  
...  

Models based on multifactorial interactions are needed to deal with the dynamics taking place in the eutrophication processes of coastal lagoons. However, as the number of indirect drivers stemming from anthropogenic factors increases, temporal disorders between anthropogenic activities may increase, thus hindering the understanding of their dynamics. We have built multifactorial pathways to deal with the dynamics associated with the cultural eutrophication process of a coastal lagoon. The pathways guided the identification of potential temporal disorder patterns between anthropogenic activities, which may exert influence on the disturbances associated with eutrophication process. The identification of temporal disorder patterns derived from anthropogenic activities belonging to different pathways resulted in a valuable form of support for analyzing and evaluating relationships between public policies, technological skills and environmental culture programs. All of which exert influence on the eutrophication process, which in turn cause changes on the trophic state and on the landscape of the coastal lagoon. Pathways composed of multifactorial interactions that take into account spatial and temporal aspects, contribute to improving the understanding of the inherent dynamics of the eutrophication process of coastal lagoons. Temporal disorders between anthropogenic activities may be seen to emerge, thus exerting changes on the trophic state and spatial damage on the landscapes of coastal lagoons.

2021 ◽  
Vol 13 (2) ◽  
pp. 537
Author(s):  
Ana I. Casarrubias-Jaimez ◽  
Ana Laura Juárez-López ◽  
José Luis Rosas-Acevedo ◽  
Maximino Reyes-Umaña ◽  
América Libertad Rodríguez-Herrera ◽  
...  

We studied the cultural eutrophication process assessments of coastal lagoons by considering sociopolitical, socioeconomic, demographic, technological, and cultural factors, which represent indirect drivers exerting effects on the eutrophication process, causing changes on the trophic status. Multifactorial interactions in eutrophication processes make understanding their complex dynamics difficult, leading to unreliable assessments and, consequently, to unsustainable management actions. This, in turn, hinders the feasibility of coastal lagoon sustainability. We propose a method based on the evaluation of pathways derived from a multifactorial network, which represents the eutrophication process, with the aim of determining the feasibility of the sustainability of the Tres Palos coastal lagoon. Our findings revealed that most of the evaluations of relationships belonging to pathways were unfeasible due to reasons such as: there was no evidence of the existence of public policies, technological skills, and cultural factors; there was a lack of data related to human settlements around the lagoon and river, industrial waste, agricultural practices, and tourism. The preceding shortcomings hinder the feasibility of coastal lagoon sustainability under study. We suggest that assessments of cultural eutrophication processes that overlook sociopolitical, socioeconomic, technological, and cultural factors are limited and inadequate for supporting the feasibility of sustainable coastal lagoons.


2017 ◽  
Vol 68 (8) ◽  
pp. 1744-1748
Author(s):  
Catalina Stoica ◽  
Gabriela Geanina Vasile ◽  
Alina Banciu ◽  
Daniela Niculescu ◽  
Irina Lucaciu ◽  
...  

During the past few decades, the anthropogenic activities induced worldwide changes in the ecological systems, including the aquatic systems. This work analysed the contamination level of groundwater resources from a rural agglomeration (Central-Western part of Prahova County) by biological and physico-chemical approaches. The study was performed during the autumn of 2016 on several sampling sites (four drilling wells, depth higher than 100 m supplying three villages; two wells lower than 10 m depth and one spring). The water quality was evaluated by comparison with the limit values of the drinking water quality legislation (Law no.458/2002) and the Order 621/2014 (applicable to all groundwater bodies of Romania). The results showed that phenols and metals (iron and manganese) exceeded the threshold values in all sampling sites. Moreover, the anthropogenic factors including agriculture, use of fertilizers, manures, animal husbandry led to an increase of the bacterial load, particularly at wells sites.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1636
Author(s):  
Thanh N. Le ◽  
Duy X. Tran ◽  
Thuong V. Tran ◽  
Sangay Gyeltshen ◽  
Tan V. Lam ◽  
...  

Saltwater intrusion risk assessment is a foundational step for preventing and controlling salinization in coastal regions. The Vietnamese Mekong Delta (VMD) is highly affected by drought and salinization threats, especially severe under the impacts of global climate change and the rapid development of an upstream hydropower dam system. This study aimed to apply a modified DRASTIC model, which combines the generic DRASTIC model with hydrological and anthropogenic factors (i.e., river catchment and land use), to examine seawater intrusion vulnerability in the soil-water-bearing layer in the Ben Tre province, located in the VMD. One hundred and fifty hand-auger samples for total dissolved solids (TDS) measurements, one of the reflected salinity parameters, were used to validate the results obtained with both the DRASTIC and modified DRASTIC models. The spatial analysis tools in the ArcGIS software (i.e., Kriging and data classification tools) were used to interpolate, classify, and map the input factors and salinization susceptibility in the study area. The results show that the vulnerability index values obtained from the DRASTIC and modified DRASTIC models were 36–128 and 55–163, respectively. The vulnerable indices increased from inland districts to coastal areas. The Ba Tri and Binh Dai districts were recorded as having very high vulnerability to salinization, while the Chau Thanh and Cho Lach districts were at a low vulnerability level. From the comparative analysis of the two models, it is obvious that the modified DRASTIC model with the inclusion of a river or canal network and agricultural practices factors enables better performance than the generic DRASTIC model. This enhancement is explained by the significant impact of anthropogenic activities on the salinization of soil water content. This study’s results can be used as scientific implications for planners and decision-makers in river catchment and land-use management practices.


Author(s):  
Ines Khedhri ◽  
Hanem Djabou ◽  
Ahmed Afli

The lagoon of Boughrara is the largest lagoon in Tunisia. For several decades it has been subject to the impact of increasing anthropogenic activities, and also to environmental stressors due to climate change and the low renewal of its waters. The present work is a contribution to the study of the functional organization of the benthic macrofauna of the lagoon of Boughrara 3 years after the extension of the channel ‘El Kantra’ which connects this lagoon to the open sea. In total, 13 stations facing the main prospective sources of disturbance and in areas likely to be more polluted were seasonally sampled during 2009–2010. Seasonal monitoring of the abiotic parameters shows a spatial heterogeneity linked to environmental and anthropogenic factors, including hydrodynamics, sedimentary texture and anthropogenic activities. The community of benthic macrofauna is generally poorly diversified at lagoonal-marine stations undergoing influences of both the marine and lagoon environment. The extreme seasons in terms of temperature and salinity seem to have an important role in the reduction of biodiversity in the lagoon of Boughrara. The trophic structure of the macrobenthic community is generally dominated by selective deposit feeders, and seems to be linked more to the availability of trophic resources than to disturbance.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Victor Eduardo Cury Silva ◽  
Davide Franco ◽  
Alessandra Larissa Fonseca ◽  
Maria Luiza Fontes ◽  
Alejandro Rodolfo Donnangelo

ABSTRACT High levels of eutrophication in coastal lagoons due to human activity have been documented worldwide. Among the main impacts observed are anoxia, hypoxia, toxic algal blooms, fish kills, loss of biodiversity and loss of bathing. This study aimed to evaluate the evolution of the trophic state of Lagoa da Conceição, a subtropical lagoon located in an urbanized watershed on the island of Santa Catarina - Brazil. Spatio temporal patterns of stratification and eutrophication were investigated to understand the main biochemical changes over time. The water quality data were obtained from field campaigns supplemented with literature of the last 15 years. The vertical structure of the water column and the trophic state were evaluated by the stratification index and the TRIX index, respectively. Analyses of variance were performed in order to identify possible temporal variations in vertical stratification and trophic level. Eutrophication effects on biogeochemical cycles were verified through a multi-dimensional cluster analysis (MDS) and correlations between variables related to physical, chemical and biological processes were verified by principal component analysis (PCA). The results showed that the water column is homogeneous in all regions except in the central region of the lagoon, and the highest ammonia concentrations and lowest dissolved oxygen concentrations with periods of anoxia are observed in bottom waters. The study looked at the high trophic level of the lagoon and its inability to process the biogeochemical changes imposed by urban development.


2019 ◽  
Vol 20 (1) ◽  
pp. 141
Author(s):  
Ildefonso Baldiris-Navarro ◽  
Juan Carlos Acosta-Jimenez ◽  
Angel Dario Gonzalez-Delgado ◽  
Alvaro Realpe-Jimenez ◽  
Juan Gabriel Fajardo-Cuadro

Coastal lagoons are one of the most threatened ecosystems in the world, because of population growth, habitat destruction, pollution, wastewater, overexploitation and invasive species which are the main causes of their degradation. The objective of this paper was to evaluate the water quality behavior in a stressed coastal lagoon in Cartagena, Colombian Caribbean. Environmental data was analyzed using hypothesis testing, confidence intervals, and also Principal components analysis (PCA). The study was focused on water parameters such as dissolved oxygen (DO), biochemical oxygen demand (BOD5), chemical oxygen demand (COD), salinity, pH, total dissolved solids, total coliforms (TC), Fecal coliforms (FC), ammonium (NH4+) and total phosphorus (TP). The analysis was conducted in line with the Colombian national water standard. Results showed that BOD5, COD, phosphorus, and coliforms are out of the limits for these variables in Colombia and are reaching levels that may be a threat to human health. Principal components analysis detected five components that explained 79.4% of the variance of data and showed that anthropogenic and temporal factors might be affecting the variation of the parameters.


Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 57 ◽  
Author(s):  
Miguel Imaz-Lamadrid ◽  
Jobst Wurl ◽  
Ernesto Ramos-Velázquez

In arid and semiarid zones, groundwater plays a key role in the ecology and availability of freshwater. Coastal lagoons in arid zones have great importance as a refuge for species of flora and fauna, as a source of freshwater, and for recreational purposes for local communities and tourism. In addition, as environments under natural stress, they are suffering pressure from anthropogenic activities and climate change, especially in zones with intense touristic development as in the case of the Baja California Peninsula in northwest Mexico. In this paper, we analyze the future of a coastal lagoon impacted by climate change and anthropogenic pressures. We constructed a groundwater MODFLOW-SWI2 model to predict changes in freshwater–saltwater inputs and correlated them with the geospatial analysis of the distribution and evolution of the water body and surrounding vegetation. The methodology was applied to the San Jose lagoon, one of the most important wetlands in the Baja California peninsula, which had been affected by anthropogenic activities and endangered by climate change. According to our water balance, the deficit of the San Jose aquifer will increase by 2040 as a result of climate change. The water table north of the lagoon will drop, affecting the amount of freshwater inflow. This reduction, together with an increase of evapotranspiration and the sea-level rise, will favor an increase of mineralization, reducing the surface water and groundwater quality and in consequence affecting the vegetation cover. Without proper management and adequate measures to mitigate these impacts, the lagoon may disappear as a freshwater ecosystem. Results of this research indicate that the use of a groundwater flow model, together with a geospatial analysis provide effective tools to predict scenarios for the future of coastal lagoons, and serve as a basis for land planning, nature conservation, and sustainable management of these ecosystems.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2059 ◽  
Author(s):  
Chiara Facca ◽  
Francesco Cavraro ◽  
Piero Franzoi ◽  
Stefano Malavasi

Transitional waters are fragile ecosystems with high ecological, social and economic values, that undergo numerous threats. According to the information provided by European Member States in the framework of the European Directive 92/43/EEC (Habitat Directive), the main threat to these ecosystems is represented by morphological and hydrological changes. The present work focuses on six lagoon fish species included in the Habitat Directive annex II (species requiring conservation measures: Aphanius fasciatus, A. iberus, Knipowitschia panizzae, Ninnigobius canestrinii, Valencia hispanica and V. letourneuxi) that spend their entire life cycle in the Mediterranean priority habitat 1150* “Coastal lagoons”. The overview of the current scientific literature allowed us to highlight how the presence and abundance of these species may provide important indications on the conservation status of coastal lagoon habitats. In fact, their occurrence, distribution and biology depend on the presence of peculiar structures, such as salt marshes, small channels, isolated pools and oligohaline areas. Coastal lagoon fragmentation and habitat loss have led to a significant reduction in genetic diversity or local population extinction. Although Aphanius and gobies have been shown to survive in eutrophic environments, it is clear that they cannot complete their life cycle without salt marshes (mainly Aphanius) and wetland areas (mainly gobies).


2017 ◽  
Vol 98 (6) ◽  
pp. 1347-1353 ◽  
Author(s):  
J. A. de León-González ◽  
N. Méndez ◽  
J. G. Navedo

A new species of Laeonereis from a shrimp farm associated with a subtropical coastal lagoon on the Mexican Pacific coast is described. The new species is characterized by a deep anterior groove on the prostomium, which is shared only with L. culveri. However, longer tentacular cirri extending back to the anterior margin of chaetiger two, the number of papillae of each group on the maxillary ring of the pharynx, and the relative size of the homogomph falcigers in the new species, allow us to separate the two species. Although the species has not been previously detected in the coastal lagoon surrounding the shrimp farm, we postulate that L. watsoni n. sp. is likely to be part of the invertebrate communities of the upper parts of similar coastal lagoons that are common along the tropical coasts of Mexico.


2014 ◽  
Vol 65 (3) ◽  
pp. 191 ◽  
Author(s):  
Kwee Siong Tew ◽  
Pei-Jie Meng ◽  
David C. Glover ◽  
Jih-Terng Wang ◽  
Ming-Yih Leu ◽  
...  

Algal bloom is a major concern worldwide. In this study, we characterised the physical and biochemical parameters during an algal bloom event in a coastal lagoon in an attempt to predict local blooms in the future. Results showed that the highest concentrations of dissolved inorganic phosphorus (DIP), chlorophyll a (chl a) and phytoplankton abundance were found in the inner area, whereas the highest dissolved inorganic nitrogen (DIN) concentration occurred near the inlet-outlet channel. Chl a was correlated with DIP, and there was a significant exponential relationship between chl a and the nitrogen to phosphorus ratio (N/P ratio) across all sampling stations and times. A higher proportion of the variation in chl a was explained by the N/P ratio than either DIP or DIN. We found that a N/P ratio <2.38 will likely trigger an algal bloom (chl a ≥ 10 µgL–1) in the lagoon. Our results suggest that the N/P ratio could be used as an expedient and reliable measure of the potential eutrophic status of coastal lagoons.


Sign in / Sign up

Export Citation Format

Share Document