scholarly journals Numerical Investigation of Surge Waves Generated by Submarine Debris Flows

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2276
Author(s):  
Zili Dai ◽  
Jinwei Xie ◽  
Shiwei Qin ◽  
Shuyang Chen

Submarine debris flows and their generated waves are common disasters in Nature that may destroy offshore infrastructure and cause fatalities. As the propagation of submarine debris flows is complex, involving granular material sliding and wave generation, it is difficult to simulate the process using conventional numerical models. In this study, a numerical model based on the smoothed particle hydrodynamics (SPH) algorithm is proposed to simulate the propagation of submarine debris flow and predict its generated waves. This model contains the Bingham fluid model for granular material, the Newtonian fluid model for the ambient water, and a multiphase granular flow algorithm. Moreover, a boundary treatment technique is applied to consider the repulsive force from the solid boundary. Underwater rigid block slide and underwater sand flow were simulated as numerical examples to verify the proposed SPH model. The computed wave profiles were compared with the observed results recorded in references. The good agreement between the numerical results and experimental data indicates the stability and accuracy of the proposed SPH model.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2314 ◽  
Author(s):  
Shu Wang ◽  
Anping Shu ◽  
Matteo Rubinato ◽  
Mengyao Wang ◽  
Jiping Qin

Non-homogeneous viscous debris flows are characterized by high density, impact force and destructiveness, and the complexity of the materials they are made of. This has always made these flows challenging to simulate numerically, and to reproduce experimentally debris flow processes. In this study, the formation-movement process of non-homogeneous debris flow under three different soil configurations was simulated numerically by modifying the formulation of collision, friction, and yield stresses for the existing Smoothed Particle Hydrodynamics (SPH) method. The results obtained by applying this modification to the SPH model clearly demonstrated that the configuration where fine and coarse particles are fully mixed, with no specific layering, produces more fluctuations and instability of the debris flow. The kinetic and potential energies of the fluctuating particles calculated for each scenario have been shown to be affected by the water content by focusing on small local areas. Therefore, this study provides a better understanding and new insights regarding intermittent debris flows, and explains the impact of the water content on their formation and movement processes.


Landslides ◽  
2021 ◽  
Author(s):  
Mariantonietta Ciurleo ◽  
Maria Clorinda Mandaglio ◽  
Nicola Moraci

AbstractThis paper presents a quantitative analysis of debris flows in weathered gneiss through a methodology to identify key aspects in the lead up to risk management. The proposed methodology considers both the triggering and propagation stages of landslide using two physically based models “Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis” (TRIGRS) and “Smoothed Particle Hydrodynamics” (SPH), respectively. The TRIGRS analyses provided information about the location and initial volume of potential landslides. The SPH model, adopting the initial triggering volumes as input data, allowed the back analysis of the propagation stage in terms of both main pathway and depositional area. Both models can be easily implemented over large areas for risk assessment and are able to provide interesting information for the design of risk mitigation structures. Clearly, the rigorous implementation of these models requires the use of geotechnical data obtained from in situ and laboratory tests. When these data are not available, literature data obtained for similar soils for genesis and stress history with those studied can be used. The applicability of the methodology has been tested on two debris flows which occurred in 2001 and 2005 in the province of Reggio Calabria causing extensive damage involving various lifelines. The model results have been validated with the real events, in terms of both triggering/inception areas and debris fans using two dimensionless indices (Itrig and Idep). The indices compared, respectively, the real triggering/inception area with the simulated one and the real depositional area with the numerical one. For analysed phenomena, the values of Itrig were higher than 90% while Idep assumes values higher than 70% which support the applicability of the proposed methodology.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Chunhui Wang ◽  
Chunyu Guo ◽  
Fenglei Han

Modified 3D Moving Particle Semi-Implicit (MPS) method is used to complete the numerical simulation of the fluid sloshing in LNG tank under multidegree excitation motion, which is compared with the results of experiments and 2D calculations obtained by other scholars to verify the reliability. The cubic spline kernel functions used in Smoothed Particle Hydrodynamics (SPH) method are adopted to reduce the deviation caused by consecutive two times weighted average calculations; the boundary conditions and the determination of free surface particles are modified to improve the computational stability and accuracy of 3D calculation. The tank is under forced multidegree excitation motion to simulate the real conditions of LNG ships, the pressures and the free surfaces at different times are given to verify the accuracy of 3D simulation, and the free surface and the splashed particles can be simulated more exactly.


Author(s):  
Kenny W. Q. Low ◽  
Chun Hean Lee ◽  
Antonio J. Gil ◽  
Jibran Haider ◽  
Javier Bonet

AbstractThis paper presents a new Smooth Particle Hydrodynamics computational framework for the solution of inviscid free surface flow problems. The formulation is based on the Total Lagrangian description of a system of first-order conservation laws written in terms of the linear momentum and the Jacobian of the deformation. One of the aims of this paper is to explore the use of Total Lagrangian description in the case of large deformations but without topological changes. In this case, the evaluation of spatial integrals is carried out with respect to the initial undeformed configuration, yielding an extremely efficient formulation where the need for continuous particle neighbouring search is completely circumvented. To guarantee stability from the SPH discretisation point of view, consistently derived Riemann-based numerical dissipation is suitably introduced where global numerical entropy production is demonstrated via a novel technique in terms of the time rate of the Hamiltonian of the system. Since the kernel derivatives presented in this work are fixed in the reference configuration, the non-physical clumping mechanism is completely removed. To fulfil conservation of the global angular momentum, a posteriori (least-squares) projection procedure is introduced. Finally, a wide spectrum of dedicated prototype problems is thoroughly examined. Through these tests, the SPH methodology overcomes by construction a number of persistent numerical drawbacks (e.g. hour-glassing, pressure instability, global conservation and/or completeness issues) commonly found in SPH literature, without resorting to the use of any ad-hoc user-defined artificial stabilisation parameters. Crucially, the overall SPH algorithm yields equal second order of convergence for both velocities and pressure.


Author(s):  
Amin Rahmat ◽  
Hossein Nasiri ◽  
Marjan Goodarzi ◽  
Ehsan Heidaryan

Purpose This paper aims to introduce a numerical investigation of aquatic locomotion using the smoothed particle hydrodynamics (SPH) method. Design/methodology/approach To model this problem, a simple improved SPH algorithm is presented that can handle complex geometries using updatable dummy particles. The computational code is validated by solving the flow over a two-dimensional cylinder and comparing its drag coefficient for two different Reynolds numbers with those in the literature. Findings Additionally, the drag coefficient and vortices created behind the aquatic swimmer are quantitatively and qualitatively compared with available credential data. Afterward, the flow over an aquatic swimmer is simulated for a wide range of Reynolds and Strouhal numbers, as well as for the amplitude envelope. Moreover, comprehensive discussions on drag coefficient and vorticity patterns behind the aquatic are made. Originality/value It is found that by increasing both Reynolds and Strouhal numbers separately, the anguilliform motion approaches the self-propulsion condition; however, the vortices show different pattern with these increments.


2014 ◽  
Author(s):  
Zhen Chen ◽  
Li Zou ◽  
Zhi Zong

In this paper, the impact pressures of two different base forms are comparatively studied using Smoothed Particle Hydrodynamics (SPH) method. It is summarized from previous works that the improved weakly compressible SPH model shows better performances than incompressible SPH model in numerical simulations of free surface flows accompany with large deformations and strong discontinuities. Such advantages are observed in numerical accuracy, stability and efficiency. The weakly compressible SPH model used in this paper is equipped with some new correction algorithms, among which include the density reinitialization algorithm and a new coupled dynamic Solid Boundary Treatment (SBT) on solid boundaries. The new boundary treatment combines the advantages of both the repulsive boundary treatment and the dynamic boundary treatment, intending to obtain more stable and accurate numerical results. A benchmark test of dam breaking is conducted to prove the reliability of the numerical model used in this paper. Two representative cases, among which one has one cavity and the other one has three cavities, are numerically investigated and compared to support the conclusion that the base form with cavities generally experience lower local and overall impact pressures than the base form of flat plate. It is found that with the application of cavities on the bottom, the peak values of the boundary pressure near central bottom significantly decrease, leading to smaller force load and better structural stability. The mechanisms of such phenomenon might be the pressure absorption effect conducted by the cavities.


2018 ◽  
Vol 15 (06) ◽  
pp. 1850046 ◽  
Author(s):  
Man Hu ◽  
Qiuqiang Liu ◽  
Fei Wu ◽  
Mengting Yu ◽  
Shenghua Jiang

Landslide can usually be induced by a strong earthquake, and it causes very serious property damage and human casualties. Modeling of post-failure flow of landslides is one of the important approaches that can be used to simulate landslide flow developments and predict the landslide hazard zone. In this paper, a Smoothed Particle Hydrodynamics (SPH) model based on the constitution of elastic-plastic constitutive mechanics for soil has been developed for simulating the behavior of a class of geo-materials under the seismic loadings. Our SPH-Soil model considers the plastic behavior of the materials, and hence it is very important for more accurate and realistic simulations of geo-materials of soil type. The implemented materials laws in the SPH-Soil code include classical elastic-plasticity with a linear elastic part, and different applicable yield surfaces with nonassociated flow rules. In order to apply this model to actual landslide modeling the Geographic Information System (GIS) is utilized to generate site-specific models. We have thus developed a C# code to generate the particles of a given landslide site, which produces realistic particle mass and actual complicated boundaries for the SPH-Soil model. With GIS enabled, complex topography and irregular boundary can be accurately and easily built up. Then the SPH-Soil code has been applied to the well-known Daguangbao landslide, which was triggered by Wenchuan earthquake in 2008. The topographies after failure were compared with that obtained from field collected data and good agreement was found.


2018 ◽  
Vol 01 (02) ◽  
pp. 1840002 ◽  
Author(s):  
Shilong Liu ◽  
Ioan Nistor ◽  
Majid Mohammadian

The smoothed particle hydrodynamics (SPH) method has been proved as a powerful algorithm for fluid mechanics, especially in the simulation of free surface flows with high speeds or drastic impacts. The solid boundary treatment method is important for the accuracy and stability of the numerical results, as the support domain of fluid particles is truncated near the vicinity of the boundary. This paper presents two commonly used methods for simulating a solid boundary in SPH simulations. Emphasis is placed on the description of the methods, definition of the boundary particles’ parameters, and discussion of their advantages and shortcomings. The classical dam break simulation is conducted using self-developed code and open source models such as DualSPHysics and PySPH in order to investigate the effects of the boundary methods. The results show that methods based on dynamic boundary particles can simulate the free water surface well with a good agreement with experimental results. The conclusions can also be used in research for boundary implementation methods for practical ocean and coastal engineering problems with free surface flows.


2020 ◽  
Vol 17 (10) ◽  
pp. 2050009
Author(s):  
Sisi Tan ◽  
Mingze Xu

Numerical modeling of whole blood still faces great challenges although significant progress has been achieved in recent decades, because of the large differences of physical and geometric properties among blood components, including red blood cells (RBCs), platelets (PLTs) and white blood cells (WBCs). In this work, we develop a three-dimensional (3D) smoothed particle hydrodynamics (SPH) model to study the whole blood in shear flow. The immersed boundary method (IBM) is used to deal with the interaction between the fluid and cells, which provides a possibility to model the RBCs, PLTs and WBCs simultaneously. The deformation of a small capsule, comparable to a PLT in size, is first examined to show the feasibility of SPH model for the PLTs’ behaviors. The motion of a single RBC in shear flow is then studied, and three typical modes, tank-treading, swinging and tumbling motions, are reproduced, which further confirm the reliability of the SPH model. After that, a simulation of the whole blood in shear flow is carried out, in which the margination trend is observed for both PLTs and WBC. This shows the capability of SPH model with IBM for the simulation of whole blood.


Sign in / Sign up

Export Citation Format

Share Document