scholarly journals Bottom-Pressure Development Due to an Abrupt Slope Reduction at Stepped Spillways

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Mohammad J. Ostad Mirza Tehrani ◽  
Jorge Matos ◽  
Michael Pfister ◽  
Anton J. Schleiss

Fluctuating bottom-pressures on stepped chutes are relevant for the spillway design. An abrupt slope reduction causes a local alteration of the bottom-pressure development. Little information is available regarding the air–water flow properties near an abrupt slope reduction on stepped chutes, particularly on the local pressure evolution. Nevertheless, the option of providing a chute slope reduction may be of interest in spillway layout. The experiments presented herein include pressure distributions on both vertical and horizontal step faces, subsequent to an abrupt slope reduction on stepped chutes. A relatively large-scale physical model including abrupt slope reductions from 50° to 18.6° and from 50° to 30° was used, operated with skimming flow. The data indicate a substantial influence of the tested slope reductions on the bottom-pressure development. In the vicinity of the slope reduction, the mean pressure head near the edge of the horizontal step face reached 0.4 to 0.6 times the velocity head upstream of the slope reduction, for critical flow depths normalized by the step height ranging between 2.6 and 4.6.

1977 ◽  
Vol 99 (3) ◽  
pp. 503-509 ◽  
Author(s):  
B. E. Lee ◽  
B. F. Soliman

A study has been made of the influence of grouping parameters on the mean pressure distributions experienced by three dimensional bluff bodies immersed in a turbulent boundary layer. The range of variable parameters has included group density, group pattern and incident flow type and direction for a simple cuboid element form. The three flow regimes associated with increasing group density are reflected in both the mean drag forces acting on the body and their associated pressure distributions. A comparison of both pressure distributions and velocity profile parameters with established work on two dimensional bodies shows close agreement in identifying these flow regime changes. It is considered that the application of these results may enhance our understanding of some common flow phenomena, including turbulent flow over rough surfaces, building ventilation studies and environmental wind around buildings.


1992 ◽  
Vol 114 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Y. C. Leung ◽  
N. W. M. Ko ◽  
K. M. Tang

Measurements of the mean pressure distributions and Strouhal numbers on partially grooved cylinders with different groove subtend angles were made over a Reynolds number range of 2.0×104 to 1.3×105 which was within the subcritical regime of smooth cylinder. The Strouhal number, pressure distributions, and their respective coefficients were found to be a function of the groove subtend angles. In general, a progressive shift of the flow regime to lower Reynolds number was observed with higher subtend angle and a subtend angle of 75 deg was found for optimum drag reduction. With the configuration of asymmetrical groove surface, lower drag, and higher lift coefficients were obtained within the same Reynolds number range. Wake traverse and boundary layer results of the asymmetric grooved cylinder indicated that the flows at the smooth and groove surfaces lied within different flow regimes and a downward shift of the wake.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1045 ◽  
Author(s):  
Min-Cheng Tu ◽  
Robert Traver

The performance of flow through orifices on a perforated distribution pipe between periods with and without partial clogging (submersion of part of the distribution pipe) was compared. The distribution pipe receives runoff and delivers it to an underground infiltration bed. Clogging appeared in winter but was reduced in summer. Performance of flow delivery was found to be defined by the effective pipe length and the pressure head. ANCOVA (ANalysis of COVAriance) was used to examine the clogging effect with flow rate plotted against the effective pipe length times the square root of the mean pressure head, and found that it was significant during low or no rainfall. During larger storms, clogging had little effect on pipe performance. Clogging might be caused by leaves and other trash accumulating in the lower section of the pipe in winter and its effect was insignificant when the water level rose in the pipe, utilizing significantly more orifices on the distribution pipe. Larger storms might also move the debris, thus exposing the orifices. The current maintenance schedule was sufficient to keep the distribution pipe at a satisfactory performance even though partial clogging can exist.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Chao Xiong ◽  
Claudia Stolle ◽  
Patrick Alken ◽  
Jan Rauberg

Abstract In this study, we have derived field-aligned currents (FACs) from magnetometers onboard the Defense Meteorological Satellite Project (DMSP) satellites. The magnetic latitude versus local time distribution of FACs from DMSP shows comparable dependences with previous findings on the intensity and orientation of interplanetary magnetic field (IMF) By and Bz components, which confirms the reliability of DMSP FAC data set. With simultaneous measurements of precipitating particles from DMSP, we further investigate the relation between large-scale FACs and precipitating particles. Our result shows that precipitation electron and ion fluxes both increase in magnitude and extend to lower latitude for enhanced southward IMF Bz, which is similar to the behavior of FACs. Under weak northward and southward Bz conditions, the locations of the R2 current maxima, at both dusk and dawn sides and in both hemispheres, are found to be close to the maxima of the particle energy fluxes; while for the same IMF conditions, R1 currents are displaced further to the respective particle flux peaks. Largest displacement (about 3.5°) is found between the downward R1 current and ion flux peak at the dawn side. Our results suggest that there exists systematic differences in locations of electron/ion precipitation and large-scale upward/downward FACs. As outlined by the statistical mean of these two parameters, the FAC peaks enclose the particle energy flux peaks in an auroral band at both dusk and dawn sides. Our comparisons also found that particle precipitation at dawn and dusk and in both hemispheres maximizes near the mean R2 current peaks. The particle precipitation flux maxima closer to the R1 current peaks are lower in magnitude. This is opposite to the known feature that R1 currents are on average stronger than R2 currents.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
K Piayda ◽  
A Wimmer ◽  
H Sievert ◽  
K Hellhammer ◽  
S Afzal ◽  
...  

Abstract Background In the era of transcatheter aortic valve replacement (TAVR), there is renewed interest in percutaneous balloon aortic valvuloplasty (BAV), which may qualify as the primary treatment option of choice in special clinical situations. Success of BAV is commonly defined as a significant mean pressure gradient reduction after the procedure. Purpose To evaluate the correlation of the mean pressure gradient reduction and increase in the aortic valve area (AVA) in different flow and gradient patterns of severe aortic stenosis (AS). Methods Consecutive patients from 01/2010 to 03/2018 undergoing BAV were divided into normal-flow high-gradient (NFHG), low-flow low-gradient (LFLG) and paradoxical low-flow low-gradient (pLFLG) AS. Baseline characteristics, hemodynamic and clinical information were collected and compared. Additionally, the clinical pathway of patients (BAV as a stand-alone procedure or BAV as a bridge to aortic valve replacement) was followed-up. Results One-hundred-fifty-six patients were grouped into NFHG (n=68, 43.5%), LFLG (n=68, 43.5%) and pLFLG (n=20, 12.8%) AS. Underlying reasons for BAV and not TAVR/SAVR as the primary treatment option are displayed in Figure 1. Spearman correlation revealed that the mean pressure gradient reduction had a moderate correlation with the increase in the AVA in patients with NFHG AS (r: 0.529, p&lt;0.001) but showed no association in patients with LFLG (r: 0.145, p=0.239) and pLFLG (r: 0.030, p=0.889) AS. Underlying reasons for patients to undergo BAV and not TAVR/SAVR varied between groups, however cardiogenic shock or refractory heart failure (overall 46.8%) were the most common ones. After the procedure, independent of the hemodynamic AS entity, patients showed a functional improvement, represented by substantially lower NYHA class levels (p&lt;0.001), lower NT-pro BNP levels (p=0.003) and a numerical but non-significant improvement in other echocardiographic parameters like the left ventricular ejection fraction (p=0.163) and tricuspid annular plane systolic excursion (TAPSE, p=0.066). An unplanned cardiac re-admission due to heart failure was necessary in 23.7% patients. Less than half of the patients (44.2%) received BAV as a bridge to TAVR/SAVR (median time to bridge 64 days). Survival was significantly increased in patients having BAV as a staged procedure (log-rank p&lt;0.001). Conclusion In daily clinical practice, the mean pressure gradient reduction might be an adequate surrogate of BAV success in patients with NFHG AS but is not suitable for patients with other hemodynamic entities of AS. In those patients, TTE should be directly performed in the catheter laboratory to correctly assess the increase of the AVA. BAV as a staged procedure in selected clinical scenarios increases survival and is a considerable option in all flow states of severe AS. (NCT04053192) Figure 1 Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 7 (2) ◽  
pp. 20
Author(s):  
Carlos Lassance ◽  
Yasir Latif ◽  
Ravi Garg ◽  
Vincent Gripon ◽  
Ian Reid

Vision-based localization is the problem of inferring the pose of the camera given a single image. One commonly used approach relies on image retrieval where the query input is compared against a database of localized support examples and its pose is inferred with the help of the retrieved items. This assumes that images taken from the same places consist of the same landmarks and thus would have similar feature representations. These representations can learn to be robust to different variations in capture conditions like time of the day or weather. In this work, we introduce a framework which aims at enhancing the performance of such retrieval-based localization methods. It consists in taking into account additional information available, such as GPS coordinates or temporal proximity in the acquisition of the images. More precisely, our method consists in constructing a graph based on this additional information that is later used to improve reliability of the retrieval process by filtering the feature representations of support and/or query images. We show that the proposed method is able to significantly improve the localization accuracy on two large scale datasets, as well as the mean average precision in classical image retrieval scenarios.


2008 ◽  
Vol 136 (6) ◽  
pp. 2006-2022 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Jenny S. N. Hui ◽  
Russell L. Elsberry

Abstract The mesoscale features of 124 tropical cyclone formations in the western North Pacific Ocean during 1999–2004 are investigated through large-scale analyses, satellite infrared brightness temperature (TB), and Quick Scatterometer (QuikSCAT) oceanic wind data. Based on low-level wind flow and surge direction, the formation cases are classified into six synoptic patterns: easterly wave (EW), northeasterly flow (NE), coexistence of northeasterly and southwesterly flow (NE–SW), southwesterly flow (SW), monsoon confluence (MC), and monsoon shear (MS). Then the general convection characteristics and mesoscale convective system (MCS) activities associated with these formation cases are studied under this classification scheme. Convection processes in the EW cases are distinguished from the monsoon-related formations in that the convection is less deep and closer to the formation center. Five characteristic temporal evolutions of the deep convection are identified: (i) single convection event, (ii) two convection events, (iii) three convection events, (iv) gradual decrease in TB, and (v) fluctuating TB, or a slight increase in TB before formation. Although no dominant temporal evolution differentiates cases in the six synoptic patterns, evolutions ii and iii seem to be the common routes taken by the monsoon-related formations. The overall percentage of cases with MCS activity at multiple times is 63%, and in 35% of cases more than one MCS coexisted. Most of the MC and MS cases develop multiple MCSs that lead to several episodes of deep convection. These two patterns have the highest percentage of coexisting MCSs such that potential interaction between these systems may play a role in the formation process. The MCSs in the monsoon-related formations are distributed around the center, except in the NE–SW cases in which clustering of MCSs is found about 100–200 km east of the center during the 12 h before formation. On average only one MCS occurs during an EW formation, whereas the mean value is around two for the other monsoon-related patterns. Both the mean lifetime and time of first appearance of MCS in EW are much shorter than those developed in other synoptic patterns, which indicates that the overall formation evolution in the EW case is faster. Moreover, this MCS is most likely to be found within 100 km east of the center 12 h before formation. The implications of these results to internal mechanisms of tropical cyclone formation are discussed in light of other recent mesoscale studies.


Author(s):  
Tuyen Dinh Hoang ◽  
Robert Colebunders ◽  
Joseph Nelson Siewe Fodjo ◽  
Nhan Phuc Thanh Nguyen ◽  
Trung Dinh Tran ◽  
...  

The COVID-19 pandemic and associated restrictive measures implemented may considerably affect people’s lives. This study aimed to assess the well-being of Vietnamese people after COVID-19 lockdown measures were lifted and life gradually returned to normal. An online survey was organized from 21 to 25 April 2020 among Vietnamese residents aged 18 and over. The survey was launched by the Hue University of Medicine and Pharmacy. The WHO-5 Well-Being Index (scored 0–25) was used to score participants’ well-being. A multivariate logistic regression model was used to determine the predictors of well-being. A total of 1922 responses were analyzed (mean age: 31 years; 30.5% male; 88.2% health professionals or students in the health sector). The mean well-being score was 17.35 ± 4.97. Determinants of a high well-being score (≥13) included older age, eating healthy food, practicing physical exercise, working from home, and adhering to the COVID-19 preventive measures. Female participants, persons worried about their relatives’ health, and smokers were more likely to have a low well-being score. In conclusion, after the lockdown measures were lifted, the Vietnamese have people continued to follow COVID-19 preventive measures, and most of them scored high on the well-being scale. Waiting to achieve large-scale COVID-19 vaccine coverage, promoting preventive COVID-19 measures remains important, together with strategies to guarantee the well-being of the Vietnamese people.


Sign in / Sign up

Export Citation Format

Share Document