Parametric optimization of aircraft arrival trajectories for aviation noise mitigation using BADA4 performance model

2021 ◽  
Vol 263 (2) ◽  
pp. 4641-4651
Author(s):  
Ameya Behere ◽  
Tejas Puranik ◽  
Michelle Kirby ◽  
Dimitri Mavris

Successful mitigation of aviation noise is a key enabler for sustainable aviation growth. A key focus of this effort is the noise arising from aircraft arrival operations. Arrival operations are characterized by the use of high-lift devices, deployment of landing gear, and low thrust levels, which results in the airframe being the major component of noise. In order to optimize for arrival noise, management of the flap schedule and gear deployment is crucial. This research aims to create an optimization framework for evaluating various aircraft trajectories in terms of their noise impact. A parametric representation of the aircraft arrival trajectory will be created to allow for the variation of aircraft's flap schedule. The Federal Aviation Administration's Aviation Environmental Design Tool will be used to simulate the aircraft trajectory and performance, and to compute the noise metrics. Specifically, the latest performance model from EUROCONTROL called "Base of Aircraft Data - Family 4" will be used. This performance model contains higher fidelity modeling of aircraft aerodynamics and other characteristics which allows for better parametric variation.

Author(s):  
R. Navaratne ◽  
V. Sethi ◽  
C. Lawson

Abstract This work aims to provide a methodology to enhance the conventional approach of the aircraft trajectory optimisation problem by including engine degradation and real aircraft flight paths within the optimisation framework; thereby the impact of engine degradation on optimum aircraft trajectories were assessed by quantifying the difference in fuel burn and emissions, when flying a trajectory which has been specifically optimised for an aircraft with degraded engines and flying a trajectory which has been optimised for clean engines. For the purpose of this study models of a clean and two degraded engines have been developed based on Exhaust Gas Temperature (EGT) margin deterioration. Aircraft performance model have been developed for short range aircraft with the capability of simulating vertical and horizontal flight profiles provides by the airlines. An emission prediction model was developed to assess NOx emissions of the mission. In addition, a multidisciplinary aircraft trajectory optimisation framework was developed to analyse short range flight trajectories under three cases. Case_1: Aircraft with clean engines, Case_2 and Case_3 were Aircraft with two levels of degraded engines. Two different multi objective optimisation studies were performed; (1) Fuel burn vs Flight time, and (2) Fuel burn vs NOx emission, Finally optimised trajectories generated with degraded engines were compared with the optimised trajectories generated with clean engines. The results have shown impact of engine degradation on optimum aircraft trajectories are significant and in order to reduce fuel burn and emissions aircraft need to fly on an optimised trajectory customised for the degraded engine performance.


2016 ◽  
Vol 10 (1) ◽  
pp. 70-77
Author(s):  
Jantri Sirait ◽  
Sulharman Sulharman

Has done design tool is a tool of refined coconut oil coconut grater, squeezer coconut milk and coconut oil heating, with the aim to streamline the time of making coconut oil and coconut oil increase production capacity. The research method consists of several stages, among others; image creation tool, procurement of materials research, cutting the material - the material framework of tools and performance test tools. The parameters observed during the performance test tools is time grated coconut, coconut milk bleeder capacity, the capacity of the boiler and the heating time of coconut oil. The design tool consists of three parts, namely a tool shaved coconut, coconut milk wringer and coconut milk heating devices. Materials used for the framework of such tools include iron UNP 6 meters long, 7.5 cm wide, 4 mm thick, while the motor uses an electric motor 0.25 HP 1430 rpm and to dampen the rotation electric motor rotation used gearbox with a ratio of round 1 : 60. the results of the design ie the time required for coconut menyerut average of 297 seconds, coconut milk wringer capacity of 5 kg of processes and using gauze pads to filter coconut pulp, as well as the heating process takes ± 2 hours with a capacity of 80 kg , The benefits of coconut oil refined tools are stripping time or split brief coconut average - average 7 seconds and coconut shell can be used as craft materials, processes extortion coconut milk quickly so the production capacity increased and the stirring process coconut oil mechanically.ABSTRAKTelah dilakukan rancang bangun alat olahan minyak kelapa yaitu alat pemarut kelapa, pemeras santan kelapa dan pemanas minyak kelapa, dengan tujuan untuk mengefisiensikan waktu pembuatan minyak kelapa serta meningkatkan kapasitas produksi minyak kelapa. Metode penelitian terdiri dari beberapa tahapan antara lain; pembuatan gambar alat, pengadaan bahan-bahan penelitian, pemotongan bahan - bahan rangka alat dan uji unjuk kerja alat. Parameter yang diamati pada saat uji unjuk kerja alat adalah waktu parut kelapa, kapasitas pemeras santan kelapa, kapasitas tungku pemanas serta waktu pemanasan minyak kelapa. Rancangan alat terdiri dari tiga bagian yaitu alat penyerut kelapa, alat pemeras santan kelapa dan alat pemanas santan kelapa. Bahan yang dipergunakan untuk rangka alat tersebut  yaitu besi UNP panjang 6 meter, lebar 7,5 cm, tebal 4 mm, sedangkan untuk motor penggerak menggunakan motor listrik 0,25 HP 1430 rpm dan untuk meredam putaran putaran motor listrik dipergunakan gearbox  dengan perbandingan putaran 1 : 60. Hasil dari rancangan tersebut yaitu waktu yang dibutuhkan untuk menyerut kelapa rata-rata 297 detik, kapasitas alat pemeras santan kelapa 5 kg sekali proses dan menggunakan kain kassa untuk menyaring ampas kelapa, serta Proses pemanasan membutuhkan waktu ± 2 jam dengan kapasitas 80 kg. Adapun keunggulan alat olahan minyak kelapa ini adalah waktu pengupasan atau belah kelapa singkat rata – rata 7 detik dan tempurung kelapa dapat digunakan sebagai bahan kerajinan, proses pemerasan santan kelapa cepat sehingga kapasitas produksi meningkat dan proses pengadukan minyak kelapa secara mekanis. Kata kunci : penyerut, pemeras, pemanas,minyak kelapa,olahan minyak kelapa.


Author(s):  
Lucio Salles de Salles ◽  
Lev Khazanovich

The Pavement ME transverse joint faulting model incorporates mechanistic theories that predict development of joint faulting in jointed plain concrete pavements (JPCP). The model is calibrated using the Long-Term Pavement Performance database. However, the Mechanistic-Empirical Pavement Design Guide (MEPDG) encourages transportation agencies, such as state departments of transportation, to perform local calibrations of the faulting model included in Pavement ME. Model calibration is a complicated and effort-intensive process that requires high-quality pavement design and performance data. Pavement management data—which is collected regularly and in large amounts—may present higher variability than is desired for faulting performance model calibration. The MEPDG performance prediction models predict pavement distresses with 50% reliability. JPCP are usually designed for high levels of faulting reliability to reduce likelihood of excessive faulting. For design, improving the faulting reliability model is as important as improving the faulting prediction model. This paper proposes a calibration of the Pavement ME reliability model using pavement management system (PMS) data. It illustrates the proposed approach using PMS data from Pennsylvania Department of Transportation. Results show an increase in accuracy for faulting predictions using the new reliability model with various design characteristics. Moreover, the new reliability model allows design of JPCP considering higher levels of traffic because of the less conservative predictions.


Author(s):  
H. Zimmermann ◽  
R. Gumucio ◽  
K. Katheder ◽  
A. Jula

Performance and aerodynamic aspects of ultra-high bypass ratio ducted engines have been investigated with an emphasis on nozzle aerodynamics. The interference with aircraft aerodynamics could not be covered. Numerical methods were used for aerodynamic investigations of geometrically different aft end configurations for bypass ratios between 12 and 18, this is the optimum range for long missions which will be important for future civil engine applications. Results are presented for a wide range of operating conditions and effects on engine performance are discussed. The limitations for higher bypass ratios than 12 to 18 do not come from nozzle aerodynamics but from installation effects. It is shown that using CFD and performance calculations an improved aerodynamic design can be achieved. Based on existing correlations, for thrust and mass-flow, or using aerodynamic tailoring by CFD and including performance investigations, it is possible to increase the thrust coefficient up to 1%.


1975 ◽  
Vol 12 (02) ◽  
pp. 146-162
Author(s):  
J. A. Beverley ◽  
R. L. Koch ◽  
E. C. Stewart ◽  
J. Weiks

This paper describes the ac-rectified dc propulsion system designed for the two ferry vessels, MV Spokane and MV Walla Walla, and reports the results of an analog study conducted as a design tool. Similar data are presented showing the results obtained by recording electrical system performance during builder's trials.


Author(s):  
Sudhakar Y. Reddy

Abstract This paper describes HIDER, a methodology that enables detailed simulation models to be used during the early stages of system design. HIDER uses a machine learning approach to form abstract models from the detailed models. The abstract models are used for multiple-objective optimization to obtain sets of non-dominated designs. The tradeoffs between design and performance attributes in the non-dominated sets are used to interactively refine the design space. A prototype design tool has been developed to assist the designer in easily forming abstract models, flexibly defining optimization problems, and interactively exploring and refining the design space. To demonstrate the practical applicability of this approach, the paper presents results from the application of HIDER to the system-level design of a wheel loader. In this demonstration, complex simulation models for cycle time evaluation and stability analysis are used together for early-stage exploration of design space.


2019 ◽  
Author(s):  
Amir Ashrafi ◽  
Ahad Zare Ravasan ◽  
Peter Trkman ◽  
Samira Afshari

1970 ◽  
Vol 10 (1-2) ◽  
pp. 119-131 ◽  
Author(s):  
Gerard De Valence

This is a reprint from Vol 1, no 1, which has not previously been available in electronic format.The analysis and understanding of the conduct and performance of an industry begins with a study of its structure. However, before analysing an industry's structure it is necessary to define the industry and identify its size, scope and scale to establish its true economic contribution. This paper discusses the size and scope of the Australian building and construction industry, firstly froma traditional industry economics approach by firm size and business characteristics using data fron three construction industry surveys done over 15 years by the ABS. Secondly, data from an industry 'cluster' perspective is shown. The objective of the paper is to compare the differences found in industry size and scope in the structure-conduct-performance approach and the alternative industry cluster approach. Each model reveals different characteristics of the industry. The conclusion finds that the building and construction industry is a case where the traditional structure-conduct-performance model cannot be easily applied. 


Sign in / Sign up

Export Citation Format

Share Document