scholarly journals Comparison of the Whole Body Composition of Fatty Acids and Amino Acids between Reared and Wild Snakehead Fish Channa striata (Bloch 1793) Juveniles

2012 ◽  
Vol 25 (4) ◽  
Author(s):  
M. ALIYU-PAIKO ◽  
R. HASHIM ◽  
ALIYU O. AMUZAT
2017 ◽  
Vol 7 (3) ◽  
pp. 168 ◽  
Author(s):  
Morakot Sroyraya ◽  
Peter J. Hanna ◽  
Tanapan Siangcham ◽  
Ruchanok Tinikul ◽  
Prapaporn Jattujan ◽  
...  

Background: Holothuria scabra is one of the most commercially important species found in the Pacific region. The sea cucumber extracts have been widely reported to have beneficial health effects. The aim of this study was to determine the nutritional compositions of H. scabra, and compare its important nutritional contents with that of other species.Methods: The sea cucumbers were dissected, sliced into small pieces, and then freeze-dried. The nutritional compositions, including proximate composition, amino acids, fatty acids, collagen, GABA, Vitamin A, C, and E of the whole body and body wall of H. scabra, were analyzed.Results: H. scabra contained a high quantity of protein (22.50% in whole body and 55.18% in body wall) and very low lipids (1.55% in whole body and 1.02% in body wall). The three most abundant amino acids found in both the whole body and body wall were glycine, glutamic acid, and proline. The main fatty acids found in the whole body were stearic acid and nervonic acid, and in the body wall were arachidonic acid and stearic acid. The whole body and body wall also contained high levels of essential amino acids, essential fatty acids, and collagen, in addition to moderate amounts of vitamin E and low amounts of GABA and vitamin C.Conclusions: The sea cucumber, H. scabra, contained high quantity of protein and very low lipid. It contained high essential amino acids, essential fatty acids, nervonic and arachidonic acids, and collagen, which also contained GABA, vitamin C, and vitamin E.Keywords: sea cucumber; Holothuria scabra; nutrition components; functional food            


1985 ◽  
Vol 53 (2) ◽  
pp. 381-389 ◽  
Author(s):  
Geoffrey Livesey

1. The effects of uncoupling of mitochondria1 oxidative phosphorylation on the efficiency of energy conservation during oxidation of amino acids, fatty acids, glycerol, glucose and 101 food proteins have been examined in order to compare how uncoupling at coupling site 1 affects energy yields compared with uncoupling at sites 2 + 3 and uncoupling by proton leakage. The effects of uncoupling by each mechanism on the isodynamic equivalents of carbohydrate, fat and protein at the level of cytoplasmic ATP yield have been estimated.2. Energy conservation during amino acid oxidation decreases relative to that for glucose as uncoupling by all three mechanisms increases. This effect is least when uncoupling is at site 1 and is associated with a fall in the isodynamicequivalent for protein: glucose of 4%maximally, and a fall in the cytoplasmic ATP yield for glucose of 25% (15–30% when accounting for uncertainty in the choice of proton stoichiometries).3. Variation in the efficiency of energy conservation for the different amino acids is large for both highly coupled and uncoupled mitochondria but the range of efficiencies for the oxidation of 101 food proteins is relatively small (less than 6% of the mean) for a tightly coupled system. This range increases absolutely (minimally fourfold) and relatively (minimally 44% of the mean value) with severely uncoupled mitochondria but is nearly constant (changes by less than 1% relative to the mean) within the probable physiologically relevant range of uncoupling in the whole body and in the full range of uncoupling at site 1. The rank order position of particular proteins within the range of values is found to change most for gelatin which is oxidized with least energy conservation in a severely (unphysiologically) uncoupled system and most efficiently in a fully coupled system when oxidation of protein is considered to be direct, i.e. not via gluconeogenesis.4. For medium- and long-chain fatty acids, uncoupling at site 1 elevates the efficiency of energy conservation relative to that for glucose (maximally 4%) whereas uncoupling by other mechanisms decreases this relative efficiency. The pattern of effects for short-chain fatty acids resembles that for the amino acids.5. The changes in the isodynamic equivalents of protein:glucose and of fat:glucose are small when uncoupling occurs at site I and tend to cancel for a mixed diet but are additive in the effect on food energy values when uncoupling is by the other mechanisms. Hence changes in the efficiency of oxidative energy coupling at site 1 in association with Luft's disease or dietary changes would result in effects which are of little true dietetic significance on the isodynamic equivalents of nutrients at the level of cytoplasmic ATP yield in vivo.


2021 ◽  
Vol 55 (3) ◽  
pp. 177
Author(s):  
Edison Serrano ◽  
Robert Simpfendorfer ◽  
Jaime Paillaman ◽  
Juan Carlos Sánchez

The proximal composition, amino acids and fatty acid profile were determined in whole body of wild and captive southern hake (Merluccius australis) in order to evaluate the differences in nutrients content due to the nutritional quality of the feed consumed during broodstock conditioning of this species. Body composition of southern hake did not show significant differences in dry matter, protein or ash content between both studied groups. Conversely, lipid content was significantly higher in the whole body of captive fish compared to the wild fish. In addition, the concentration of linoleic, docosahexaenoic and eicosapentaenoic acids, showed significantly higher level in captive hake than the wild hake. Amino acids concentrations did not vary between fish, except threonine and taurine. Threonine concentration was higher in wild hake whereas taurine concentration was higher in captive hake. The results of this comparative study provide a better understanding of the effects of supplemented feed currently used to acclimate and maintain in captivity southern hake broodstock.


2020 ◽  
Vol 45 (3) ◽  
pp. 318-326
Author(s):  
Zahra Farahnak ◽  
Ye Yuan ◽  
Catherine A. Vanstone ◽  
Hope A. Weiler

Research regarding polyunsaturated fatty acid (PUFA) status and body composition in neonates is limited. This study tested the relationship between newborn docosahexaenoic acid (DHA) status and body composition. Healthy mothers and their term-born infants (n = 100) were studied within 1 month postpartum for anthropometry and whole-body composition using dual-energy X-ray absorptiometry. Maternal and infant red blood cell (RBC) membrane PUFA profiles were measured using gas chromatography (expressed as percentage of total fatty acids). Data were grouped according to infant RBC DHA quartiles and tested for differences in n-3 status and infant body composition using mixed-model ANOVA, Spearman correlations, and regression analyses (P < 0.05). Mothers were 32.2 ± 4.6 years (mean ± SD) of age, infants (54% males) were 0.68 ± 0.23 month of age, and 80% exclusively breastfed. Infant RBC DHA (ranged 3.96% to 7.75% of total fatty acids) inversely associated with infant fat mass (r = –0.22, P = 0.03). Infant and maternal RBC n-6/n-3 PUFA ratio (r2 = 0.28, P = 0.043; r2 = 0.28, P = 0.041 respectively) were positively associated with fat mass. These results demonstrate that both maternal and infant long-chain PUFA status are associated with neonatal body composition. Novelty Our findings support an early window to further explore the relationship between infant n-3 PUFA status and body composition. Maternal and infant n-3 PUFA status is inversely related to neonatal whole-body fat mass. DHA appears to be the best candidate to test in the development of a lean body phenotype.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 88-88
Author(s):  
Agata Wierzchowska-McNew ◽  
Mariëlle Engelen ◽  
Gabriella Ten Have ◽  
John Thaden ◽  
Nicolaas Deutz

Abstract Objectives Aging is associated with changes in body composition (eg. sarcopenia) but the overall effects of aging on systemic amino acid kinetics need further exploration. We previously reported metabolic differences in certain amino acids between young and older adults using comprehensive metabolic flux analysis. We expanded this novel single stable tracer pulse approach by the addition of several other isotopically-labeled amino acids to confirm and extend our findings in a new cohort of young and older adults. Methods We studied 18 healthy young (∼23 y, 9 females and 9 males) and 16 older adults (∼67 y, 8 females and 8 males) by administering a single dose of a mixture of stable amino acid tracers related to arginine-citrulline, glutamate, branched-chain amino acid (BCAA: leucine, isoleucine, valine), and protein-related metabolism. A baseline blood sample was collected before administration of the pulse tracer followed by 1.5 hours blood sampling protocol. We measured plasma enrichments by LC-MS/MS to calculate their whole body production (WBP) rates and metabolite interconversions. In addition, body composition by dual-energy X-ray absorptiometry was measured. Statistics were performed by unpaired student t-test. Results Older adults had a 13% higher Body Mass Index (P = 0.005) and 13% lower appendicular skeletal muscle index than the younger group (P = 0.04). WBP of glutamate was 26% lower (P &lt; 0.05) in older adults whereas WBP of tau-methylhistidine was higher (31%, P = 0.045), in line with our previously reported data. In addition, older adults were characterized by lower WBP of all 3 BCAAs (P = 0.007), histidine (P = 0.001) and tryptophan (P = 0.003) by 17%, 16%, and 15%, respectively. However, higher whole-body production rates were observed for citrulline (24%, P = 0.036) and de novo arginine synthesis (21%, P = 0.027) in older adults. Conclusions Metabolic flux analysis reveals that the kinetics of a large set of amino acids differ between younger and older adults which indicates that amino acid metabolism is age-related. The clinical relevance of those changes needs further investigation. Funding Sources CTRAL Internal Funds.


2016 ◽  
Vol 62 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Y.A. Pankov

Studies on experimental animals with knockout of the insulin receptor gene Insr (in the whole body or in certain tissues) and/or related genes encoding proteins involved in realization of insulin signal transduction in target cells, have made an important contribution to the elucidation of insulin regulation of metabolism, particularly fat metabolism. Since the whole insulin secreted by b-cells, together with the products of gastrointestinal tract digestion of proteins, fats, and carbohydrates reach the liver, the latter is the first organ on which this hormone acts. The liver employs released amino acids for synthesis of proteins, including apoproteins for various lipoproteins. Glucose is used for synthesis of glycogen, fatty acids, and triglycerides, which enter all the organs in very low density lipoproteins (VLDL). The LIRKO mice with knockout of the Insr gene in the liver demonstrated inhibition of synthesis of macromolecular compounds from amino acids, glucose, and fatty acids. Low molecular weight substances demonstrated increased entry to circulation, and together with other disorders induced hyperglycemia. In LIRKO mice blood glucose levels and glucose tolerance demonstrated time-dependent normalization and at later stages the increase in glucose levels was replaced by hypoglycemia. These changes can be well explained if we take into consideration that one of the main functions of insulin consists in stimulation of energy accumulation by means of activation of triglyceride deposition in adipose tissue. FIRKO mice with selective knockout of adipose tissue Insr were characterized by decreased uptake of glucose in adipocytes, and its transformation into lipids. However, the level of body fat in animals remained normal, possibly due to preserved insulin receptor in the liver and insulin-induced activation of triglyceride production which maintained normal levels of body fat stores, the effective functioning of adipose tissue and secretion of leptin by adipocytes during inhibition of glucose transformation into triglyceride in adipose tissue. Knockout of the Insr gene in muscles blocked glucose uptake by myocytes, but it did not induce hyperglycemia, probably due to the increase in glucose uptake by other organs, which retained the insulin receptor, and induced some increase in fat resources in adipose tissue. Similar results were obtained in mice with knockout the glucose transporter 4 GLUT4 in muscle and/or adipose tissue. Insulin microinjections in the brain, in the cerebral ventricle 4 (ICV) and mediobasal hypothalamus (MBH) did not affect the insulin levels in the general circulation, but effectively activated lipogenesis and inhibited lipolysis in adipose tissue. They induced obesity, similar to conventional obesity when the insulin levels increased. These results may serve as additional evidence for importance of the adipogenic insulin function in mechanisms of regulation of general metabolism.


2018 ◽  
Vol 88 (1-2) ◽  
pp. 80-89 ◽  
Author(s):  
Zahra Shakibay Novin ◽  
Saeed Ghavamzadeh ◽  
Alireza Mehdizadeh

Abstract. Branched chain amino acids (BCAA), with vitamin B6 have been reported to improve fat metabolism and muscle synthesis. We hypothesized that supplementation with BCAA and vitamin B6 would result in more weight loss and improve body composition and blood markers related to cardiovascular diseases. Our aim was to determine whether the mentioned supplementation would affect weight loss, body composition, and cardiovascular risk factors during weight loss intervention. To this end, we performed a placebo-controlled randomized clinical trial in 42 overweight and obese women (BMI = 25–34.9 kg/m2). Taking a four-week moderate deficit calorie diet (–500 kcal/day), participants were randomized to receive BCAA (6 g/day) with vitamin B6 (40 mg/day) or placebo. Body composition variables measured with the use of bioelectrical impedance analysis, homeostatic model assessment, and plasma insulin, Low density lipoprotein, High density lipoprotein, Total Cholesterol, Triglyceride, and fasting blood sugar were measured. The result indicated that, weight loss was not significantly affected by BCAA and vitamin B6 supplementation (–2.43 ± 1.02 kg) or placebo (–1.64 ± 1.48 kg). However, significant time × treatment interactions in waist to hip ratio (P = 0.005), left leg lean (P = 0.004) and right leg lean (P = 0.023) were observed. Overall, supplementation with BCAA and vitamin B6 could preserve legs lean and also attenuated waist to hip ratio.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1010-P
Author(s):  
VICTORIA E. PARKER ◽  
DARREN ROBERTSON ◽  
TAO WANG ◽  
DAVID C. HORNIGOLD ◽  
MAXIMILIAN G. POSCH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document