Method for presentation of dimensional accuracy data in building constructions

1990 ◽  
Author(s):  
Hannah D. Budinoff ◽  
Yilin Sun ◽  
Sara McMains

Abstract This work describes an experimental study to assess if analytical and empirical models can estimate the risk of warping deviation for parts made using fused filament fabrication based on part geometry. We also examine how the accuracy of the prediction varies for different machines and materials. If the predictive models can estimate risk of warping for a given part geometry, they can help enable better design for additive manufacturing so that designers can change part geometry early in the design process to have more easily-manufacturable parts, or choose an alternative orientation to optimize dimensional accuracy at the process planning stage. Specifically, we evaluate the extent to which two analytical models and one empirical model can assess the risk of warping for approximately rectangular parts with varying dimensions. We analyze dimensional accuracy data for parts with different length, height, and fillet type that were printed in ABS and PLA on different fused filament fabrication machines. After evaluating the three models, we found that the empirical model had the best performance over all datapoints. However, the analytical models showed promise but need further refinement on how the prediction of warping deviation depends on part height. Areas for additional research are highlighted.


2020 ◽  
Vol 14 (3) ◽  
pp. 7296-7308
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
N. H. A. Ngadiman ◽  
M.R. Alkahari

Fused deposition modelling (FDM) is a process of joining materials based on material entrusion technique to produce objects from 3D model using layer-by-layer technique as opposed to subtractive manufacturing. However, many challenges arise in the FDM-printed part such as warping, first layer problem and elephant food that was led to an error in dimensional accuracy of the printed parts especially for the overhanging parts. Hence, in order to investigate the manufacturability of the FDM printed part, various geometrical and manufacturing features were developed using the benchmarking artifacts. Therefore, in this study, new benchmarking artifacts containing multiple overhang lengths were proposed. After the benchmarking artifacts were developed, each of the features were inspected using 3D laser scanner to measure the dimensional accuracy and tolerances. Based on 3D scanned parts, 80% of the fabricated parts were fabricated within ±0.5 mm of dimensional accuracy as compared with the CAD data. In addition, the multiple overhang lengths were also successfully fabricated with a very significant of filament sagging observed.


Author(s):  
Vokulova Yu.A. Vokulova ◽  
E.N. Zhulev

This article presents the results of studying the dimensional accuracy of the bases of complete removable prostheses made using a 3D printer and the traditional method. Bases of complete removable prostheses were made using an intraoral laser scanner iTero Cadent (USA) and a 3D printer Asiga Max UV (Australia). To study the dimensional accuracy of the bases of complete removable prostheses, we used the DentalCAD 2.2 Valletta software. The Nonparametric Wilcoxon W-test was used for statistical analysis of the obtained data. We found that the average value of the difference with the standard for bases made using digital technologies is 0.08744±0.0484 mm. The average value of the difference with the standard for bases made by the traditional method is 0.5654±0.1611 mm. Based on these data, we concluded that the bases of complete removable prostheses made using modern digital technologies (intraoral laser scanning and 3D printer) have a higher dimensional accuracy compared to the bases of complete removable prostheses made using the traditional method with a significance level of p<0.05 (Wilcoxon's W-test=0, p=0.031). Keywords: digital technologies in dentistry, digital impressions, intraoral scanner, 3D printing, ExoCAD, complete removable dentures.


2020 ◽  
Vol 5 (2) ◽  
pp. 268-277
Author(s):  
Luluk Anisyah ◽  
◽  
Wibowo Wibowo

Increasing the number of elderly causes an increase in health problems one of which is associated with hypertension which can cause complications and death. The purpose of this study was to determine the description and accuracy of the use of antihypertensive drugs in geriatric patients who were diagnosed with hypertension at the Tajinan Primary Health in Malang in the period January-December 2019. This study was an observational or non-experimental study conducted using retrospective medical record data. The measuring instrument used was the data collection sheet from the medical record, the Consensus for Hypertension Management 2019 to see the accuracy of indications, patient accuracy, drug accuracy, and dose accuracy. Data analysis using Correlation Test. The results of the correlation analysis showed that the resulting Standardize estimates were 0.002 (p <0.05) which showed that there was a significant relationship between sexes with the occurrence of hypertension. The results of the correlation analysis showed that the resulting Standardize estimates were 0.001 (p <0.05) which means that there was a significant relationship between the accuracy of the types of antihypertensive drugs used in hypertensive patients. The conclusion is that the rationality evaluation of the use and administration of drugs in hypertensive patients at the Tajinan Primary Health in Malang based on the 2019 Hypertension Management Consensus guidelines shows the accuracy both in terms of indication, drug, patient and dose.


2020 ◽  
Vol 15 ◽  
Author(s):  
Lei Li ◽  
Yujun Cai ◽  
Guohe Li ◽  
Meng Liu

Background: As an important method of remanufacturing, laser cladding can be used to obtain the parts with specific shapes by stacking materials layer by layer. The formation mechanism of laser cladding determines the “Staircase effect”, which makes the surface quality can hardly meet the dimensional accuracy of the parts. Therefore, the subsequent machining must be performed to improve the dimensional accuracy and surface quality of cladding parts. Methods: In this paper, chip formation, cutting force, cutting temperature, tool wear, surface quality, and optimization of cutting parameters in the subsequent cutting of laser cladding layer are analyzed. Scholars have expounded and studied these five aspects but the cutting mechanism of laser cladding need further research. Results: The characteristics of cladding layer are similar to that of difficult to machine materials, and the change of parameters has a significant impact on the cutting performance. Conclusion: The research status of subsequent machining of cladding layers is summarized, mainly from the aspects of chip formation, cutting force, cutting temperature, tool wear, surface quality, and cutting parameters optimization. Besides, the existing problems and further developments of subsequent machining of cladding layers are pointed out. The efforts are helpful to promote the development and application of laser cladding remanufacturing technology.


2019 ◽  
Vol 12 (4) ◽  
pp. 378-382
Author(s):  
Shan Syedhidayat ◽  
Quan Wang ◽  
Al-Hadad M.A.A. Mohsen ◽  
Jinrong Wang

Background: One of the most common manufacturing equipment for polymer product is injection molding machine. In order to ensure the precise, stable and continuous operation of the injection molding machine, the maintenance of the lubrication system must be done well. The stability, reliability, rationality and low noise performance of the lubrication system of injection molding machine directly affect the quality of injection products, dimensional accuracy, molding cycle, working environment and maintenance. Objective: The purpose of this study is to introduce the methods of choice, maintenance of lubricating oil for injection molding machine from many literatures and patents in the recent years, such as lubricating oil device, lubricating composite and structure. Methods: An example of the 260M5 automatic injection molding machine is introduced for the inspection and maintenance of the lubrication system including lubricating oil and lubricating grease. Results: To ensure the lubrication of the injection molding machine, it needs to strictly observe the lubrication time and modulus of the injection molding machine. It needs to strictly control the temperature rise of the lubricating oil and select the correct lubricating oil and grease to ensure the lubrication quality. Conclusion: In the operation of the injection molding machine, it is necessary to check that the lubricating oil is sufficient and the lubricating points are working properly. It ensures sufficient lubrication of the injection molding machine and strictly observes the lubrication time and modulus of the injection molding machine. The stored lubricating oil should be sealed well to prevent air pollution.


Sign in / Sign up

Export Citation Format

Share Document