Antioxidant potentials and inhibitory activities against α-amylase and α-glucosidase, and glucose uptake activity in insulin-resistance HepG2 cells of some medicinal plants

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Weidong Xu ◽  
Jiayao Li ◽  
Weipeng Qi ◽  
Ye Peng

Apigenin-8-C-glucoside (vitexin), a natural phytochemical contained in hawthorn, has been reported to have versatile beneficial bioactivities, such as antioxidation, anticancer property, and adipogenesis inhibition. The present research aimed to determine the influence of vitexin on insulin resistance elicited by HFD in mice and HepG2 cells. Vitexin markedly alleviated body weight gain and improved glucose and insulin intolerance induced by HFD. Vitexin partially normalized blood glucose, cholesterol, TNF-α, and hepatic lipid content. Moreover, vitexin recovered the reduced glucose uptake induced by glucosamine. The present results indicate that vitexin prevents HFD-induced insulin resistance.


2015 ◽  
Vol 19 ◽  
pp. 487-494 ◽  
Author(s):  
Qun Huang ◽  
Lei Chen ◽  
Hui Teng ◽  
Hongbo Song ◽  
Xiaoqi Wu ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Fang Huang ◽  
Jie Chen ◽  
Jingwen Wang ◽  
Pingping Zhu ◽  
Wenting Lin

Obesity-related insulin resistance and high fatty acid concentrations occur during the development of type 2 diabetes mellitus. The role of high concentrations of plasma-free fatty acids is not fully understood. In this study, palmitic acid (PA, 0.8 mM for 24 h) induced the expression of miR-221 that bound to phosphoinositide 3-kinases (PI3K) mRNA to inhibit glucose uptake by HepG2 cells. Compared with controls, PA significantly decreased glucose uptake, increased insulin receptor substrate-2 (IRS-2) and miR-221 expression, and decreased phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and glucose transporter type 4 (GLUT4) mRNA expression. Luciferase reporter assay revealed that miR-221 binding inhibited PI3K expression. Transfection of HepG2 cells with an miR-221 mimic induced miR-221 expression and inhibited the PI3K/AKT pathway. PA decreased glucose uptake in HepG2 cells by inducing the expression of miR-221, which bound to PI3K mRNA and suppressed PI3K/AKT signaling. miR-221 may be a novel target for preventing and treating obesity-induced insulin resistance.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Chunjie Jiang ◽  
Shanshan Zhang ◽  
Hongmei Zeng ◽  
Jingjing Liu ◽  
Dan Li ◽  
...  

AbstractEmerging evidence has been revealed that high fat diet (HFD) correlate with insulin resistance (IR) which could be induced by endoplasmic reticulum stress (ERS). Recently, obesity or HFD induced nonalcoholic fatty liver disease (NAFLD) could promote alteration of iron metabolism. Disorder of iron metabolism have been linked to unnormal metabolism of glucose and lipid. Herein, we investigated the effect of impaired iron homeostasis on hepatic IR, focusing on ferritinophagy. Male C57/6J mice were administered with HFD (60% energy from fat) or LFD (10% energy from fat) for 10 weeks (n = 10), and Palmitic acid (PA)-insulin treated HepG2 cells were also established. Hepatic IR as evidenced by increased hepatic steatosis and decreased of p-AKT (48%, p < 0.0005), p-GSK-3β (34%, p < 0.05) in the liver of HFD mice. In addition, decreased iron level and expression NCOA4, as well as increased up-regulation of IRE1α and EIF2α were observed in HFD liver. By using desferrioxamine (DFO) and ferric ammonium citrate (FAC), we examined iron level on IRE1α and EIF2α. And glucose uptake assay shown that FAC supplementation, and ERS inhibitors of 4-PBA and STF could improve the glucose uptake of HepG2 cells in the presence of PA. Furthermore, we evaluated the glucose uptake of HepG2 cells incubated with adenovirus which mediated overexpression of NCOA4, FAC, 4-PBA (ERS inhibitor) or STF (IRE1 inhibitor). Taken together, deficiency of iron induced by impaired ferritinophagy induced hepatic IR, partly by aggravating hepatic ERS, especially IRE1 signal pathway in vivo and vitro. These findings provide evidence and new insight for therapeutic strategy of iron deficiency in NAFLD.


Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 33 ◽  
Author(s):  
Samuel Odeyemi ◽  
John Dewar

The incidence of diabetes is on the rise and one of the medically active plants used for the treatment of diabetes in South Africa is Lauridia tetragona. The aim of this study is to investigate the antidiabetic property of the polyphenolics (PP) compounds isolated from the methanolic extract of Lauridia tetragona. The α-amylase, α-glucosidase, dipeptidyl peptidase IV (DPPIV), lipase inhibitory activities, and glucose uptake in HepG2 were investigated. The methanolic extract fractions of L. tetragona yielded six fractions (PP1–PP6) all of which showed weak inhibition against DPPIV and lipase compared to the standards. However, PP4 and PP6 showed the best inhibition against α-amylase (IC50 of 359.3 ± 2.11 and 416.82 ± 2.58 μg/mL, respectively) and α-glucosidase (IC50 of 95.93 ± 2.34 and 104.49 ± 2.21 μg/mL, respectively) and only PP4 (173.6%) resulted in enhanced glucose uptake in HepG2 cells compared to berberine (129.89%) and metformin (187.16%) used as positive controls. The previous investigation on PP4 and PP6 showed the presence of polyphenolics such as ferulic acid, coumaric acid, and caffeic acid. The results of this study suggest that L. tetragona could be suitable as an antidiabetic agent and justifies the folkloric use of the plant to treat diabetes.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3382 ◽  
Author(s):  
Tuantuan Tong ◽  
Ning Ren ◽  
Park Soomi ◽  
Jiafan Wu ◽  
Na Guo ◽  
...  

Theaflavins, the characteristic and bioactive polyphenols in black tea, possess the potential improving effects on insulin resistance-associated metabolic abnormalities, including obesity and type 2 diabetes mellitus. However, the related molecular mechanisms are still unclear. In this research, we investigated the protective effects of theaflavins against insulin resistance in HepG2 cells induced by palmitic acid. Theaflavins significantly increased glucose uptake of insulin-resistant cells at noncytotoxic doses. This activity was mediated by upregulating the total and membrane bound glucose transporter 4 protein expressions, increasing the phosphor-Akt (Ser473) level, and decreasing the phosphorylation of IRS-1 at Ser307. Moreover, theaflavins were found to enhance the mitochondrial DNA copy number, down-regulate the PGC-1β mRNA level and increase the PRC mRNA expression. Mdivi-1, a selective mitochondrial division inhibitor, could attenuate TFs-induced promotion of glucose uptake in insulin-resistant HepG2 cells. Taken together, these results suggested that theaflavins could improve hepatocellular insulin resistance induced by free fatty acids, at least partly through promoting mitochondrial biogenesis. Theaflavins are promising functional food ingredients and medicines for improving insulin resistance-related disorders.


2014 ◽  
Vol 4 (4) ◽  
pp. 197-206 ◽  
Author(s):  
Jun-Zeng Ma ◽  
Li-Xin Yang ◽  
Xiao-Ling Shen ◽  
Ji-Huan Qin ◽  
Li-Lan Deng ◽  
...  

2020 ◽  
Vol 17 (7) ◽  
pp. 840-849
Author(s):  
Mahendra Gowdru Srinivas ◽  
Prabitha Prabhakaran ◽  
Subhankar Probhat Mandal ◽  
Yuvaraj Sivamani ◽  
Pranesh Guddur ◽  
...  

Background: Thiazolidinediones and its bioisostere, namely, rhodanines have become ubiquitous class of heterocyclic compounds in drug design and discovery. In the present study, as part of molecular design, a series of novel glitazones that are feasible to synthesize in our laboratory were subjected to docking studies against PPAR-γ receptor for their selection. Methods and Results: As part of the synthesis of selected twelve glitazones, the core moiety, pyridine incorporated rhodanine was synthesized via dithiocarbamate. Later, a series of glitazones were prepared via Knovenageal condensation. In silico docking studies were performed against PPARγ protein (2PRG). The titled compounds were investigated for their cytotoxic activity against 3T3-L1 cells to identify the cytotoxicity window of the glitazones. Further, within the cytotoxicity window, glitazones were screened for glucose uptake activity against L6 cells to assess their possible antidiabetic activity. Conclusion: Based on the glucose uptake results, structure activity relationships are drawn for the title compounds.


Sign in / Sign up

Export Citation Format

Share Document