scholarly journals Theaflavins Improve Insulin Sensitivity through Regulating Mitochondrial Biosynthesis in Palmitic Acid-Induced HepG2 Cells

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3382 ◽  
Author(s):  
Tuantuan Tong ◽  
Ning Ren ◽  
Park Soomi ◽  
Jiafan Wu ◽  
Na Guo ◽  
...  

Theaflavins, the characteristic and bioactive polyphenols in black tea, possess the potential improving effects on insulin resistance-associated metabolic abnormalities, including obesity and type 2 diabetes mellitus. However, the related molecular mechanisms are still unclear. In this research, we investigated the protective effects of theaflavins against insulin resistance in HepG2 cells induced by palmitic acid. Theaflavins significantly increased glucose uptake of insulin-resistant cells at noncytotoxic doses. This activity was mediated by upregulating the total and membrane bound glucose transporter 4 protein expressions, increasing the phosphor-Akt (Ser473) level, and decreasing the phosphorylation of IRS-1 at Ser307. Moreover, theaflavins were found to enhance the mitochondrial DNA copy number, down-regulate the PGC-1β mRNA level and increase the PRC mRNA expression. Mdivi-1, a selective mitochondrial division inhibitor, could attenuate TFs-induced promotion of glucose uptake in insulin-resistant HepG2 cells. Taken together, these results suggested that theaflavins could improve hepatocellular insulin resistance induced by free fatty acids, at least partly through promoting mitochondrial biogenesis. Theaflavins are promising functional food ingredients and medicines for improving insulin resistance-related disorders.

Author(s):  
Tuantuan Tong ◽  
Ning Ren ◽  
Jiafan Wu ◽  
Na Guo ◽  
Xiaobo Liu ◽  
...  

Theaflavins, the characteristic and bioactive polyphenols in black tea, possess the potential improvement effects on insulin resistance-associated metabolic abnormalities including obesity and type 2 diebetes. However, the molecular mechanisms of theaflavins improving insulin sensitivity are still not clear. In this study, we investigated the protective effects and mechanisms of theaflavins on palmitic acid-induced insulin resistance in HepG2 cells. Theaflavins could significantly increase glucose uptake of insulin-resistant cells at noncytotoxic doses. This activity was mediated by upregulating the glucose transporter 4 protein expression, increasing the phosphorylation of IRS-1 at Ser307, and reduced the phosphor-Akt (Ser473) level. Moreover, theaflavins were found to enhance mitochondrial DNA copy number through down-regulate the PGC-1β mRNA level and up-regulate PRC mRNA expression in insulin-resistant HepG2 cells. These results indicated that theaflavins could improve free fatty acid-induced hepatic insulin resistance by promoting mitochondrial biogenesis, and were promising functional food and medicines for insulin resistance-related disorders.


2009 ◽  
Vol 203 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Yun Wang ◽  
Patsy M Nishina ◽  
Jürgen K Naggert

The TALLYHO/Jng (TH) mouse strain is a polygenic model for type 2 diabetes (T2D) characterized by moderate obesity, impaired glucose tolerance and uptake, insulin resistance, and hyperinsulinemia. The goal of this study was to elucidate the molecular mechanisms responsible for the reduced glucose uptake and insulin resistance in the adipose tissue of this model. The translocation and localization of glucose transporter 4 (GLUT4) to the adipocyte plasma membrane were impaired in TH mice compared to control C57BL6/J (B6) mice. These defects were associated with decreased GLUT4 protein, reduced phosphatidylinositol 3-kinase activity, and alterations in the phosphorylation status of insulin receptor substrate 1 (IRS1). Activation of c-Jun N-terminal kinase 1/2, which can phosphorylate IRS1 on Ser307, was significantly higher in TH mice compared with B6 controls. IRS1 protein but not mRNA levels was found to be lower in TH mice than controls. Immunoprecipitation with anti-ubiquitin and western blot analysis of IRS1 protein revealed increased total IRS1 ubiquitination in adipose tissue of TH mice. Suppressor of cytokine signaling 1, known to promote IRS1 ubiquitination and subsequent degradation, was found at significantly higher levels in TH mice compared with B6. Immunohistochemistry showed that IRS1 colocalized with the 20S proteasome in proteasomal structures in TH adipocytes, supporting the notion that IRS1 is actively degraded. Our findings suggest that increased IRS1 degradation and subsequent impaired GLUT4 mobilization play a role in the reduced glucose uptake in insulin resistant TH mice. Since low-IRS1 levels are often observed in human T2D, the TH mouse is an attractive model to investigate mechanisms of insulin resistance and explore new treatments.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Fang Huang ◽  
Jie Chen ◽  
Jingwen Wang ◽  
Pingping Zhu ◽  
Wenting Lin

Obesity-related insulin resistance and high fatty acid concentrations occur during the development of type 2 diabetes mellitus. The role of high concentrations of plasma-free fatty acids is not fully understood. In this study, palmitic acid (PA, 0.8 mM for 24 h) induced the expression of miR-221 that bound to phosphoinositide 3-kinases (PI3K) mRNA to inhibit glucose uptake by HepG2 cells. Compared with controls, PA significantly decreased glucose uptake, increased insulin receptor substrate-2 (IRS-2) and miR-221 expression, and decreased phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and glucose transporter type 4 (GLUT4) mRNA expression. Luciferase reporter assay revealed that miR-221 binding inhibited PI3K expression. Transfection of HepG2 cells with an miR-221 mimic induced miR-221 expression and inhibited the PI3K/AKT pathway. PA decreased glucose uptake in HepG2 cells by inducing the expression of miR-221, which bound to PI3K mRNA and suppressed PI3K/AKT signaling. miR-221 may be a novel target for preventing and treating obesity-induced insulin resistance.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10413
Author(s):  
Jiawei Li ◽  
Xiaoqin Ding ◽  
Tunyu Jian ◽  
Han Lü ◽  
Lei Zhao ◽  
...  

Insulin resistance (IR), caused by impaired insulin signal and decreased insulin sensitivity, is generally responsible for the pathophysiology of type 2 diabetes mellitus (T2DM). Sesquiterpene glycosides (SGs), the exclusive natural products from loquat leaf, have been regarded as potential lead compounds owing to their high efficacy in hypoglycemia and hypolipidemia. Here, we evaluated the beneficial effects of four single SGs isolated from loquat leaf, including SG1, SG2, SG3 and one novel compound SG4 against palmitic acid-induced insulin resistance in HepG2 cells. SG1, SG3 and SG4 could significantly enhance glucose uptake of insulin-resistant HepG2 cells at non-cytotoxic concentration. Meanwhile, Oil Red O staining showed the decrease of both total cholesterol and triglyceride content, suggesting the amelioration of lipid accumulation by SGs in insulin-resistant HepG2 cells. Further investigations found that the expression levels of phosphorylated AMPK, ACC, IRS-1, and Akt were significantly up-regulated after SGs treatment, on the contrary, the expression levels of SREBP-1 and FAS were significantly down-regulated. Notably, AMPK inhibitor Compound C (CC) blocked the regulative effects, while AMPK activator AICAR mimicked the effects of SGs in PA-treated insulin-resistant HepG2 cells. In conclusion, SGs (SG4>SG1≈SG3>SG2) improved lipid accumulation in insulin-resistant HepG2 cells through the AMPK signaling pathway.


2020 ◽  
Author(s):  
Chiao-Ming Chen ◽  
Viola Varga ◽  
Lie-Fen Shyur ◽  
Shu-Chi Mu ◽  
Sing-Chung Li

Abstract Background White sweet potato (WSP; I. batatas L. Simon No.1) has many potential beneficial effects on metabolic control and diabetes-related insulin resistance. The improvement of insulin resistance by WSP tuber extracts on glucose uptake were not investigated in C2C12 myoblast cells. Results WSP tuberous ethanol extract (WSP-E), partition with ethyl-acetate and water to got ethyl-acetate layer (WSP-EA) and water layer (WSP-EW) have highest total phenol contents and antioxidant activity respectively. After low concentration horse serum on differentiation inducement of C2C12 myoblasts into mature myotubes, treated with TNF-α to induce insulin resistant, WSP-EA and WSP-EW extracts increased the uptake of fluorescence glucose analogue (2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-d-glucose, 2-NBDG) in a dose depend manner by flow cytometry. The WSP-EA enhanced glucose uptake by activation of phosphorylation of IR (pIR), IRS-1 (pIRS-1) and Akt (pAkt) involved in PI3K (phosphatidylinositol 3-kinase) / protein kinase B (Akt) pathway, also upregulated glucose transporter 4 (GLUT4) expression in myotubes. Conclusions WSP-EA enhanced the glucose uptake in C2C12 myotubes through upregulating the PI3K/Akt pathway. WSP tuber extracts has potential applications to improve insulin resistance in diabetes in vitro.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Ming Li ◽  
Zongyu Han ◽  
Weijian Bei ◽  
Xianglu Rong ◽  
Jiao Guo ◽  
...  

The aim of our study is to elucidate the mechanisms of oleanolic acid (OA) on insulin resistance (IR) in HepG2 cells. HepG2 cells were induced with FFA as the insulin resistance model and were treated with OA. Then the glucose content and the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were analyzed. Moreover, protein expression of nuclear factor kappa B (NF-κB), insulin receptor substrate 1(IRS1), and glucose transporter 4 (GLUT4) in cells treated with OA were measured by Western blot analysis. Additionally, IRS1 protein expression exposed to OA was detected after using pyrrolidine dithiocarbamate (PDTC).Our results revealed that OA decreased the glucose content in HepG2 cells in vitro. Moreover, OA reduced the levels of TNF-α and IL-6 and upregulated IRS1 and GLUT4 protein expression. Furthermore, OA also reduced NF-κB protein expression in insulin-resistant HepG2 cells. After blocking NF-κB, the expression of IRS1 protein had no obvious changes when treated with OA. OA attenuated insulin resistance and decreased the levels of TNF-α and IL-6. Meanwhile, OA decreased NF-κB protein expression and upregulated IRS1 and GLUT4 protein expression. Therefore, regulating the IRS1-GLUT4 pathway via NF-κB was the underlying mechanism of OA on insulin resistance.


2016 ◽  
Vol 38 (5) ◽  
pp. 2030-2040 ◽  
Author(s):  
Qi Zhou ◽  
Xinzhou Yang ◽  
Mingrui Xiong ◽  
Xiaolan Xu ◽  
Li Zhen ◽  
...  

Background/Aims: Chloroquine can induce an increase in the cellular uptake of glucose; however, the underlying mechanism is unclear. Methods: In this study, translocation of GLUT4 and intracellular Ca2+ changes were simultaneously observed by confocal microscope in L6 cells stably over-expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM) was traced using HA-GLUT4-GFP. Glucose uptake was measured using a cell-based glucose uptake assay. GLUT4 protein was detected by Western blotting and mRNA level was detected by RT-PCR. Results: We found that chloroquine induced significant increases in glucose uptake, glucose transporter GLUT4 translocation to the plasma membrane (GTPM), GLUT4 fusion with the PM, and intracellular Ca2+ in L6 muscle cells. Chloroquine-induced increases of GTPM and intracellular Ca2+ were inhibited by Gallein (Gβγ inhibitor) and U73122 (PLC inhibitor). However, 2-APB (IP3R blocker) only blocked the increase in intracellular Ca2+ but did not inhibit GTPM increase. These results indicate that chloroquine, via the Gβγ-PLC-IP3-IP3R pathway, induces elevation of Ca2+, and this Ca2+ increase does not play a role in chloroqui-ne-evoked GTPM increase. However, GLUT4 fusion with the PM and glucose uptake were significantly inhibited with BAPTA-AM. This suggests that Ca2+ enhances GLUT4 fusion with the PM resulting in glucose uptake increase. Conclusion: Our data indicate that chloroquine via Gβγ-PLC-IP3-IP3R induces Ca2+ elevation, which in turn promotes GLUT4 fusion with the PM. Moreover, chloroquine can enhance GLUT4 trafficking to the PM. These mechanisms eventually result in glucose uptake increase in control and insulin-resistant L6 cells. These findings suggest that chloroquine might be a potential drug for improving insulin tolerance in diabetic patients.


2016 ◽  
Vol 38 (5) ◽  
pp. 2063-2078 ◽  
Author(s):  
Tong Zhou ◽  
Xianhong Meng ◽  
Hui Che ◽  
Nannan Shen ◽  
Dan Xiao ◽  
...  

Background/Aims: Type 2 Diabetes Mellitus (T2DM) is characterized by insulin resistance (IR), but the underlying molecular mechanisms are incompletely understood. MicroRNAs (miRNAs) have been demonstrated to participate in the signalling pathways relevant to glucose metabolism in IR. The purpose of this study was to test whether the multiple-target anti-miRNA antisense oligonucleotides (MTg-AMO) technology, an innovative miRNA knockdown strategy, can be used to interfere with multiple miRNAs that play critical roles in regulating IR. Methods: An MTg-AMO carrying the antisense sequences targeting miR-106b, miR-27a and miR-30d was constructed (MTg-AMO106b/27a/30d). Protein levels were determined by Western blot analysis, and transcript levels were detected by real-time RT-PCR (qRT-PCR). Insulin resistance was analysed with glucose consumption and glucose uptake assays. Results: We found that the protein level of glucose transporter 4 (GLUT4), Mitogen-activated protein kinase 14 (MAPK 14), Phosphatidylinositol 3-kinase regulatory subunit beta (PI3K regulatory subunit beta) and mRNA level of Slc2a4 (encode GLUT4), Mapk14 (encode MAPK 14) and Pik3r2 (encode PI3K regulatory subunit beta) were all significantly down-regulated in the skeletal muscle of diabetic rats and in insulin-resistant L6 cells. Overexpression of miR-106b, miR-27a and miR-30d in L6 cells decreased glucose consumption and glucose uptake, and reduced the expression of GLUT4, MAPK 14 and PI3K regulatory subunit beta. Conversely, silencing of endogenous miR-106b, miR-27a and miR-30d in insulin-resistant L6 cells enhanced glucose consumption and glucose uptake, and increased the expression of GLUT4, MAPK 14 and PI3K regulatory subunit beta. MTg-AMO106b/27a/30d up-regulated the protein levels of GLUT4, MAPK 14 and PI3K regulatory subunit beta, enhanced glucose consumption and glucose uptake. Conclusion: Our data suggested that miR-106b, miR-27a and miR-30d play crucial roles in the regulation of glucose metabolism by targeting the GLUT4 signalling pathway in L6 cells. Moreover, MTg-AMO106b/27a/30d offers more potent effects than regular singular AMOs.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1780
Author(s):  
Bao Le ◽  
Pham-Thi-Ngoc Anh ◽  
Seung-Hwan Yang

Polysaccharides are key bioactive compounds in lotus plumule tea, but their anti-diabetes activities remain unclear. The purpose of this study was to investigate the prebiotic activities of a novel polysaccharide fraction from the Nelumbo nucifera lotus plumule, and to examine its regulation of glucose metabolism in insulin-resistant HepG2 cells. The N. nucifera polysaccharide (NNP) was purified after discoloration, hot water extraction, ethanol precipitation, and DEAE-cellulose chromatography to obtain purified polysaccharide fractions (NNP-2). Fourier transform infrared spectroscopy was used to analyze the main structural characteristics and functional group of NNP-2. Physicochemical characterization indicated that NNP-2 had a molecular weight of 110.47 kDa and consisted of xylose, glucose, fructose, galactose, and fucose in a molar ratio of 33.4:25.7:22.0:10.5:8.1. The prebiotic activity of NNP-2 was demonstrated in vitro using Lactobacillus and Bifidobacterium. Furthermore, NNP-2 showed bioactivity against α-glucosidase (IC50 = 97.32 µg/mL). High glucose-induced insulin-resistant HepG2 cells were used to study the effect of NNP-2 on glucose consumption, and the molecular mechanism of the insulin transduction pathway was studied using RT-qPCR. NNP-2 could improve insulin resistance by modulating the IRS1/PI3K/Akt pathway in insulin-resistant HepG2 cells. Our data demonstrated that the Nelumbo nucifera polysaccharides are potential sources for nutraceuticals, and we propose functional food developments from the bioactive polysaccharides of N. nucifera for the management of diabetes.


2021 ◽  
Vol 11 (9) ◽  
pp. 1812-1817
Author(s):  
Jingjing Zhou ◽  
Wenjuan Zhu ◽  
Zheng Mao ◽  
Zhen Li ◽  
Xiaoqin Li ◽  
...  

Background: The objective of the research was to investigate the roles of miR-4458 in the regulation of insulin resistance in hepatic cells and to explore the underlying molecular mechanisms. Methods: The blood samples were collected from the T2D patients and the health controls, and the liver tissues were collected from the DM and control rats. The relationship between IGF1R and miR-4458 was predicted by TargetScan and verified by the dual luciferase reporter gene system. qRT-PCR was used to measure the mRNA expression of miR-4458, IGF1R, G6Pase and PEPCK. The protein expression of IGF1R, p-AKT and AKT were measured by Western blot analysis. The rat insulin ELISA Kit and glucose Uptake Colorimteric Assay Kit were used to determine the level of serum insulin and the glucose uptake. Results: miR-4458 was high expressed in T2D patients. We predicted and verified that IGF1R was a direct target of miR-4458, and the mRNA expression of IGF1R was reduced in type 2 diabetes patients. We established the diabetes model (DM) and IR HepG2 cell model, and found that the blood glucose and serum insulin levels were significantly elevated in the DM group. miR-4458 expression was up-regulated, while the expression of IGF1R and p-AKT, and p-AKT/AKT ratio were reduced in the DM group and IR HepG2 cell model. miR-4458 inhibitor and IGF1R-siRNA significantly decreased the expression of miR-4458 and IGF1R respectively. In comparison with IR+inhibitor control group, miR-4458 inhibitor increased 2-DG6P content, IGF1R expression, p-AKT expression and p-AKT/AKT ratio, reduced the expression of G6Pase and PEPCK, and all the effects were reversed by down-regulating IGF1R. Conclusion: miR-4458 regulated the insulin resistance in hepatic cells by regulating the IGF1R/PI3K/AKT signal pathway, which will be a potential target for the treatment of diabetes.


Sign in / Sign up

Export Citation Format

Share Document