scholarly journals Modeling growth of total height using early data from forest inventories in fast growing Eucalyptus spp plantations

2021 ◽  
Vol 8 (3) ◽  
pp. 1567-1573
Author(s):  
Samuel de Pádua Chaves e Carvalho ◽  
Mariana Peres de Lima Chaves e Carvalho ◽  
Natalino Calegario ◽  
Adriano Ribeiro de Mendonça ◽  
Valdir Carlos Lima de Andrade ◽  
...  

This work evaluated the growth trend represented by three biological models used for modeling forest growth and production (Schumacher; Chapman-Richards; Logistic). These curves were chosen because they are widely used by forest science professionals. The functions were adjusted under the hypothesis that there is influence of the initial, 6 and 12 month measurements on the shape of the production curves and, consequently, in the estimate of their parameters. The data that formed the adjustment basis were generated by the continuous monitoring performed at 6, 12, and 24 months and later at each 12 months in order to yield the growth patterns for the evaluated plantations. The results herein presented allow us to conclude that independently of the type of adjustment, the Chapman-Richards function was the one that exhibited the best statistics, with the BIAS values reduced in up to 30% when compared to the others. The Schumacher function presented the worst performance among the proposed criteria in this study. So, given the results obtained, we suggest a broader reflection about the growth and production issue, especially for the use of biometric models applied to forest production forecast, in which stability and adherence of the curves to the data are expected

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Juan Guerra-Hernández ◽  
Adrián Pascual

Abstract Background The NASA’s Global Ecosystem Dynamics Investigation (GEDI) satellite mission aims at scanning forest ecosystems on a multi-temporal short-rotation basis. The GEDI data can validate and update statistics from nationwide airborne laser scanning (ALS). We present a case in the Northwest of Spain using GEDI statistics and nationwide ALS surveys to estimate forest dynamics in three fast-growing forest ecosystems comprising 211,346 ha. The objectives were: i) to analyze the potential of GEDI to detect disturbances, ii) to investigate uncertainty source regarding non-positive height increments from the 2015–2017 ALS data to the 2019 GEDI laser shots and iii) to estimate height growth using polygons from the Forest Map of Spain (FMS). A set of 258 National Forest Inventory plots were used to validate the observed height dynamics. Results The spatio-temporal assessment from ALS surveying to GEDI scanning allowed the large-scale detection of harvests. The mean annual height growths were 0.79 (SD = 0.63), 0.60 (SD = 0.42) and 0.94 (SD = 0.75) m for Pinus pinaster, Pinus radiata and Eucalyptus spp., respectively. The median annual values from the ALS-GEDI positive increments were close to NFI-based growth values computed for Pinus pinaster and Pinus radiata, respectively. The effect of edge border, spatial co-registration of GEDI shots and the influence of forest cover in the observed dynamics were important factors to considering when processing ALS data and GEDI shots. Discussion The use of GEDI laser data provides valuable insights for forest industry operations especially when accounting for fast changes. However, errors derived from positioning, ground finder and canopy structure can introduce uncertainty to understand the detected growth patterns as documented in this study. The analysis of forest growth using ALS and GEDI would benefit from the generalization of common rules and data processing schemes as the GEDI mission is increasingly being utilized in the forest remote sensing community.


2015 ◽  
Vol 28 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Thomas Bersinger ◽  
Isabelle Le Hécho ◽  
Gilles Bareille ◽  
Thierry Pigot ◽  
Alexandre Lecomte

Continuous monitoring of the sanitation network of the urban catchment of Pau (southwest France) has been performed since March 2012 using rain gauges, flowmeters, as well as turbidity and conductivity probes. Good correlations were obtained between turbidity, total suspended solids (TSS) and chemical oxygen demand (COD) on the one hand, and conductivity and total nitrogen on the other hand. This allowed an instantaneous and continuous estimation of pollutant concentrations and fluxes since that date. In the present paper we focused on the results of October 2012, which was characterized by alternating periods of dry and rainy events. Turbidity and conductivity raw data show different trends during the study period depending on the parameter and the rain events. A turbidity peak is observed at the beginning of each rain event but its amplitude varies with the intensity of the rain and the length of the preceding dry weather period. Conversely, conductivity decrease during each rain event implying, that rain water acts as a dilution factor. The behaviour of COD and total nitrogen differ markedly due to their partitioning between the dissolved (total nitrogen) and particulate phases (COD). Daily pollutant fluxes allow a global comprehension and monitoring of the sewer system. Important COD fluxes during a rain event preceded by a long dry weather period highlight the importance of erosion of sedimentary deposits in the sewerage network. During these events, important fluxes are discharged into receiving water leading to the question of the impact on aquatic life. Generally, these results highlight the potential of online monitoring to better understand the behaviour of the sewer network on long or short time scales. This could be a useful tool to manage wastewater treatment.


1996 ◽  
Vol 26 (4) ◽  
pp. 670-681 ◽  
Author(s):  
S.B. McLaughlin ◽  
D.J. Downing

Seasonal growth patterns of mature loblolly pine (Pinustaeda L.) trees over the interval 1988–1993 have been analyzed to evaluate the effects of ambient ozone on growth of large forest trees. Patterns of stem expansion and contraction of 34 trees were examined using serial measurements with sensitive dendrometer band systems. Study sites, located in eastern Tennessee, varied significantly in soil moisture, soil fertility, and stand density. Levels of ozone, rainfall, and temperature varied widely over the 6-year study interval. Regression analysis identified statistically significant influences of ozone on stem growth patterns, with responses differing widely among trees and across years. Ozone interacted with both soil moisture stress and high temperatures, explaining 63% of the high frequency, climatic variance in stem expansion identified by stepwise regression of the 5-year data set. Observed responses to ozone were rapid, typically occurring within 1–3 days of exposure to ozone at ≥40 ppb and were significantly amplified by low soil moisture and high air temperatures. Both short-term responses, apparently tied to ozone-induced increases in whole-tree water stress, and longer term cumulative responses were identified. These data indicate that relatively low levels of ambient ozone can significantly reduce growth of mature forest trees and that interactions between ambient ozone and climate are likely to be important modifiers of future forest growth and function. Additional studies of mechanisms of short-term response and interspecies comparisons are clearly needed.


2021 ◽  
Author(s):  
Fabian E. Fassnacht ◽  
Jannika Schäfer ◽  
Hannah Weiser ◽  
Lukas Winiwarter ◽  
Nina Krašovec ◽  
...  

<p>LiDAR-based forest inventories focusing on estimating and mapping structure-related forest inventory variables across large areas have reached operationality. In the commonly applied area-based approach, a set of field-measured inventory plots is combined with spatially co-located airborne laserscanning data to train empirical models that can then be used to predict the target metric over the entire area covered by LiDAR data.</p><p>The area-based approach was found to produce reliable estimates for structure-related forest inventory metrics such as wood volume and biomass across many forest types. However, the current workflows still leave space for improvement that may result in cost-reduction with respect to data acquisition or improved accuracies. This is particularly relevant as the area-based approach is increasingly used in operational forestry settings. To further optimize existing workflows, experiments are required that need large amounts of forest inventory data (e.g., to examine the effect of sample size or the field inventory design on the model performances) or multiple LiDAR acquisitions (e.g., to identify optimal/cost-efficient acquisition settings). The acquisition of these types of data is cost-intensive and is hence often limited to small extents within scientific experiments.</p><p>Here, we present the ”GeForse - Generating Synthetic Forest Remote Sensing Data” approach to create synthetic LiDAR datasets suitable for such optimization studies. GeForse combines a database of single-tree models consisting of point clouds extracted from real LiDAR data with the outputs of a spatially explicit, single tree-based forest growth simulator (in this case SILVA). For each simulated tree, we insert a real point-cloud tree with properties (species, crown diameter, height) matching the properties of the simulated tree. This results in a synthetic 3D forest with a realistic 3D-structure where the inventory metrics of each tree are known. This 3D forest then serves as input to the “Heidelberg LiDAR Operations Simulator” (HELIOS++, https://github.com/3dgeo-heidelberg/helios) and thereby enables the simulation of LiDAR acquisition flights with varying acquisition settings and flight trajectories. In combination with the “full inventory” of all trees in the simulated forest, this enables a wide variety of sensitivity analyses.</p><p>In this contribution, we give an overview of the complete GeForse approach from extracting the tree models, to generating the 3D forest and simulating LiDAR flights over the 3D forest using HELIOS++. Further, we present a brief case-study where this approach was applied to optimize certain aspects of area-based forest inventory approaches using LiDAR data from a forest area in central Europe. Finally, we provide an outlook on future application fields of the GeForse approach.</p>


2014 ◽  
Vol 11 (4) ◽  
pp. 19-31 ◽  
Author(s):  
Lun Zhang ◽  
Jonathan J. H. Zhu

Social network sites (SNSs) have brought revolutionary changes to individuals' social interactions. The growth of online personal relationships is crucial for understanding current interpersonal communications and network dynamics. In the context of a Chinese SNS, this study provides an empirical presentation of the growth patterns of individuals' online friendships. This study uncovers the regularity as well as the variability of such growth patterns. On the one hand, the friendship growth patterns show regularity in that the time trajectory of friendship growth for most users levels off at some point of their friendship formation. On the other hand, the growth patterns of online friendships also demonstrate variability. There are three essentially different growth patterns emerged: the logistic pattern (i.e., S-shape), the double-logistic pattern (i.e., double-S shape), and the power pattern (i.e., rotated-L shape). By employing multinomial logistic regression, this study further found that network connectedness lead to the differences in these growth patterns of online friendships. However, a user's personal strategy of online friendship formation is found to have a nil effect on explaining the differences in growth patterns of online friendships. This paper concludes by discussing the theoretical and practical implications of the growth patterns of online relationships.


2007 ◽  
Vol 37 (3) ◽  
pp. 580-597 ◽  
Author(s):  
Adrian J. Das ◽  
John J. Battles ◽  
Nathan L. Stephenson ◽  
Phillip J. van Mantgem

We examined mortality of Abies concolor (Gord. & Glend.) Lindl. (white fir) and Pinus lambertiana Dougl. (sugar pine) by developing logistic models using three growth indices obtained from tree rings: average growth, growth trend, and count of abrupt growth declines. For P. lambertiana, models with average growth, growth trend, and count of abrupt declines improved overall prediction (78.6% dead trees correctly classified, 83.7% live trees correctly classified) compared with a model with average recent growth alone (69.6% dead trees correctly classified, 67.3% live trees correctly classified). For A. concolor, counts of abrupt declines and longer time intervals improved overall classification (trees with DBH ≥20 cm: 78.9% dead trees correctly classified and 76.7% live trees correctly classified vs. 64.9% dead trees correctly classified and 77.9% live trees correctly classified; trees with DBH <20 cm: 71.6% dead trees correctly classified and 71.0% live trees correctly classified vs. 67.2% dead trees correctly classified and 66.7% live trees correctly classified). In general, count of abrupt declines improved live-tree classification. External validation of A. concolor models showed that they functioned well at stands not used in model development, and the development of size-specific models demonstrated important differences in mortality risk between understory and canopy trees. Population-level mortality-risk models were developed for A. concolor and generated realistic mortality rates at two sites. Our results support the contention that a more comprehensive use of the growth record yields a more robust assessment of mortality risk.


1988 ◽  
Vol 18 (4) ◽  
pp. 385-390 ◽  
Author(s):  
Kenneth D. Kimball ◽  
MaryBeth Keifer

The appropriateness of relating spatially proximate (40-km radius) temperature and precipitation data from different elevations to montane forest growth patterns was investigated for Mount Washington, New Hampshire. Monthly mean temperature and total precipitation data (1933–1983) were correlated (p < 0.05) among all pairs of meteorological stations (280, 420, 610, 1915 m and regional averages) on or near Mount Washington. The unexplained variance (1 − r2) for precipitation comparisons between meteorological stations was greater relative to temperature. When correlated with the average tree-ring index chronology of 90 red spruce trees on Mount Washington (800–1200 m), the monthly temperature data yielded similar correlative patterns among the four meteorological stations. However, the monthly temperature data from the meteorological stations (610 and 1915 m) most proximate to the montane forest study site were correlated (p < 0.10) with the tree-ring indices for two to three times as many months as the temperature data from the lower elevations. There was no consistency in correlative results of tree-ring indices with monthly precipitation data among the four meteorological stations. However, precipitation measurements and Palmer drought indices are poor indicators of moisture availability in montane forests. We conclude that spatially proximate, low elevation temperature data can underestimate correlative relationships between temperature and montane tree-ring data in the northeastern United States.


2001 ◽  
Vol 31 (3) ◽  
pp. 526-538 ◽  
Author(s):  
Donald McKenzie ◽  
Amy E Hessl ◽  
David L Peterson

We explored spatial patterns of low-frequency variability in radial tree growth among western North American conifer species and identified predictors of the variability in these patterns. Using 185 sites from the International Tree-Ring Data Bank, each of which contained 10–60 raw ring-width series, we rebuilt two chronologies for each site, using two conservative methods designed to retain any low-frequency variability associated with recent environmental change. We used factor analysis to identify regional low-frequency patterns in site chronologies and estimated the slope of the growth trend since 1850 at each site from a combination of linear regression and time-series techniques. This slope was the response variable in a regression-tree model to predict the effects of environmental gradients and species-level differences on growth trends. Growth patterns at 27 sites from the American Southwest were consistent with quasi-periodic patterns of drought. Either 12 or 32 of the 185 sites demonstrated patterns of increasing growth between 1850 and 1980 A.D., depending on the standardization technique used. Pronounced growth increases were associated with high-elevation sites (above 3000 m) and high-latitude sites in maritime climates. Future research focused on these high-elevation and high-latitude sites should address the precise mechanisms responsible for increased 20th century growth.


Author(s):  
Dênio Mariz Timóteo ◽  
Giuliano Maia Castro ◽  
Diego Rosa Pessoa ◽  
Chistian Miziara ◽  
Daniel Caetano

The production industry and the market for the distribution of audiovisual content is regulated in different ways by different countries, which, on the one hand, want to protect, develop and foster national audiovisual production, but on the other, want to allow free access for the public to foreign content. National legislation and regulatory policy in countries often pose challenges to IT governance, as well as requiring practical efforts in building and maintaining tools that can assist in monitoring the audiovisual market. This paper presents technical aspects of the Conditioned Access Service Monitoring Platform (MP-SeAC), a software designed, built and operated by Ancine in Brazil as a tool to assist compliance with Law 12.485/2011 that regulates the performance of economic agents in pay-TV market. MP-SeAC software captures, processes, records, indexes and retrieves videos from 200 pay-TV channels, allowing for continuous monitoring of programming and enforcement of effective compliance and promotion of national production. In the future, the recorded video collection will also serve the education and research community and society at large.


Sign in / Sign up

Export Citation Format

Share Document