Faculty Opinions recommendation of Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations.

Author(s):  
Gideon Schreiber
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shin Irumagawa ◽  
Kaito Kobayashi ◽  
Yutaka Saito ◽  
Takeshi Miyata ◽  
Mitsuo Umetsu ◽  
...  

AbstractThe stability of proteins is an important factor for industrial and medical applications. Improving protein stability is one of the main subjects in protein engineering. In a previous study, we improved the stability of a four-helix bundle dimeric de novo protein (WA20) by five mutations. The stabilised mutant (H26L/G28S/N34L/V71L/E78L, SUWA) showed an extremely high denaturation midpoint temperature (Tm). Although SUWA is a remarkably hyperstable protein, in protein design and engineering, it is an attractive challenge to rationally explore more stable mutants. In this study, we predicted stabilising mutations of WA20 by in silico saturation mutagenesis and molecular dynamics simulation, and experimentally confirmed three stabilising mutations of WA20 (N22A, N22E, and H86K). The stability of a double mutant (N22A/H86K, rationally optimised WA20, ROWA) was greatly improved compared with WA20 (ΔTm = 10.6 °C). The model structures suggested that N22A enhances the stability of the α-helices and N22E and H86K contribute to salt-bridge formation for protein stabilisation. These mutations were also added to SUWA and improved its Tm. Remarkably, the most stable mutant of SUWA (N22E/H86K, rationally optimised SUWA, ROSA) showed the highest Tm (129.0 °C). These new thermostable mutants will be useful as a component of protein nanobuilding blocks to construct supramolecular protein complexes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreea Lorena Mateescu ◽  
Nicolae-Bogdan Mincu ◽  
Silvana Vasilca ◽  
Roxana Apetrei ◽  
Diana Stan ◽  
...  

AbstractThe purpose of the present study was to evaluate de influence of protein–sugar complexation on the stability and functionality of C-reactive protein, after exposure to constant high temperatures, in order to develop highly stable positive controls for in-vitro diagnostic tests. C-reactive protein is a plasmatic protein used as a biomarker for the diagnosis of a series of health problems such as ulcerative colitis, cardiovascular diseases, metabolic syndrome, due to its essential role in the evolution of chronic inflammation. The sugar–protein interaction was investigated using steady state and time resolved fluorescence. The results revealed that there are more than two classes of tryptophan, with different degree of accessibility for the quencher molecule. Our study also revealed that sugar–protein complexes have superior thermostability, especially after gamma irradiation at 2 kGy, the protein being stable and functional even after 22 days exposure to 40 °C.


Author(s):  
Gennady Verkhivker ◽  
Steve Agajanian ◽  
Deniz Yasar Oztas ◽  
Grace Gupta

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against SARS-CoV-2 virus and resilience against mutational escape. In this work, we combined atomistic simulations and conformational dynamics analysis with the ensemble-based mutational profiling of binding interactions for a diverse panel of SARS-CoV-2 spike complexes with nanobodies. Using this computational toolkit, we identified dynamic signatures and binding affinity fingerprints for the SARS-CoV-2 spike protein complexes with nanobodies Nb6 and Nb20, VHH E, a pair combination VHH E+U, a biparatopic nanobody VHH VE, and a combination of CC12.3 antibody and VHH V/W nanobodies. Through ensemble-based deep mutational profiling of stability and binding affinities, we identify critical hotspots and characterize molecular mechanisms of SARS-CoV-2 spike protein binding with single ultra-potent nanobodies, nanobody cocktails and biparatopic nanobodies. By quantifying dynamic and energetic determinants of the SARS-CoV-2 S binding with nanobodies, we also examine the effects of circulating variants and escaping mutations. We found that mutational escape mechanisms may be controlled through structurally and energetically adaptable binding hotspots located in the host receptor-accessible binding epitope that are dynamically coupled to the stability centers in the distant epitope targeted by VHH U/V/W nanobodies. The results of this study suggested a mechanism in which through cooperative dynamic changes, nanobody combinations and biparatopic nanobody can modulate the global protein response and induce the increased resilience to common escape mutants.


2014 ◽  
Vol 25 (17) ◽  
pp. 2620-2633 ◽  
Author(s):  
Thierry Blisnick ◽  
Johanna Buisson ◽  
Sabrina Absalon ◽  
Alexandra Marie ◽  
Nadège Cayet ◽  
...  

Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140RNAi mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex.


2020 ◽  
Vol 74 (1) ◽  
pp. 181-200 ◽  
Author(s):  
Judith P. Armitage ◽  
Richard M. Berry

The bacterial flagellar motor is the most complex structure in the bacterial cell, driving the ion-driven rotation of the helical flagellum. The ordered expression of the regulon and the assembly of the series of interacting protein rings, spanning the inner and outer membranes to form the ∼45–50-nm protein complex, have made investigation of the structure and mechanism a major challenge since its recognition as a rotating nanomachine about 40 years ago. Painstaking molecular genetics, biochemistry, and electron microscopy revealed a tiny electric motor spinning in the bacterial membrane. Over the last decade, new single-molecule and in vivo biophysical methods have allowed investigation of the stability of this and other large protein complexes, working in their natural environment inside live cells. This has revealed that in the bacterial flagellar motor, protein molecules in both the rotor and stator exchange with freely circulating pools of spares on a timescale of minutes, even while motors are continuously rotating. This constant exchange has allowed the evolution of modified components allowing bacteria to keep swimming as the viscosity or the ion composition of the outside environment changes.


2018 ◽  
Vol 475 (8) ◽  
pp. 1441-1454
Author(s):  
Julián Esteban Sáez ◽  
Cristian Arredondo ◽  
Carlos Rivera ◽  
María Estela Andrés

CoREST family of transcriptional co-repressors regulates gene expression and cell fate determination during development. CoREST co-repressors recruit with different affinity the histone demethylase LSD1 (KDM1A) and the deacetylases HDAC1/2 to repress with variable strength the expression of target genes. CoREST protein levels are differentially regulated during cell fate determination and in mature tissues. However, regulatory mechanisms of CoREST co-repressors at the protein level have not been studied. Here, we report that CoREST (CoREST1, RCOR1) and its homologs CoREST2 (RCOR2) and CoREST3 (RCOR3) interact with PIASγ (protein inhibitor of activated STAT), a SUMO (small ubiquitin-like modifier)-E3-ligase. PIASγ increases the stability of CoREST proteins and facilitates their SUMOylation by SUMO-2. Interestingly, the SUMO-conjugating enzyme, Ubc9 also facilitates the SUMOylation of CoREST proteins. However, it does not change their protein levels. Specificity was shown using the null enzymatic form of PIASγ (PIASγ-C342A) and the SUMO protease SENP-1, which reversed SUMOylation and the increment of CoREST protein levels induced by PIASγ. The major SUMO acceptor lysines are different and are localized in nonconserved sequences among CoREST proteins. SUMOylation-deficient CoREST1 and CoREST3 mutants maintain a similar interaction profile with LSD1 and HDAC1/2, and consequently maintain similar repressor capacity compared with wild-type counterparts. In conclusion, CoREST co-repressors form protein complexes with PIASγ, which acts both as SUMO E3-ligase and as a protein stabilizer for CoREST proteins. This novel regulation of CoREST by PIASγ interaction and SUMOylation may serve to control cell fate determination during development.


2019 ◽  
Author(s):  
Laura Sánchez-Caballero ◽  
Dei M. Elurbe ◽  
Fabian Baertling ◽  
Sergio Guerrero-Castillo ◽  
Mariel van den Brand ◽  
...  

AbstractProtein complexes from the oxidative phosphorylation (OXPHOS) system are assembled with the help of proteins called assembly factors. We here delineate the function of the inner mitochondrial membrane protein TMEM70, in which mutations have been linked to OXPHOS deficiencies, using a combination of BioID, complexome profiling and coevolution analyses. TMEM70 interacts with complex I and V and for both complexes the loss of TMEM70 results in the accumulation of an assembly intermediate followed by a reduction of the next assembly intermediate in the pathway. This indicates that TMEM70 has a role in the stability of membrane-bound subassemblies or in the membrane recruitment of subunits into the forming complex. Independent evidence for a role of TMEM70 in OXPHOS assembly comes from evolutionary analyses. The TMEM70/TMEM186/TMEM223 protein family, of which we show that TMEM186 and TMEM223 are mitochondrial in human as well, only occurs in species with OXPHOS complexes. Our results validate the use of combining complexomics with BioID and evolutionary analyses in elucidating congenital defects in protein complex assembly.


2015 ◽  
Vol 112 (11) ◽  
pp. E1181-E1190 ◽  
Author(s):  
Matthias Hillenbrand ◽  
Christian Schori ◽  
Jendrik Schöppe ◽  
Andreas Plückthun

Agonist binding to G-protein–coupled receptors (GPCRs) triggers signal transduction cascades involving heterotrimeric G proteins as key players. A major obstacle for drug design is the limited knowledge of conformational changes upon agonist binding, the details of interaction with the different G proteins, and the transmission to movements within the G protein. Although a variety of different GPCR/G protein complex structures would be needed, the transient nature of this complex and the intrinsic instability against dissociation make this endeavor very challenging. We have previously evolved GPCR mutants that display higher stability and retain their interaction with G proteins. We aimed at finding all G-protein combinations that preferentially interact with neurotensin receptor 1 (NTR1) and our stabilized mutants. We first systematically analyzed by coimmunoprecipitation the capability of 120 different G-protein combinations consisting of αi1or αsLand all possible βγ-dimers to form a heterotrimeric complex. This analysis revealed a surprisingly unrestricted ability of the G-protein subunits to form heterotrimeric complexes, including βγ-dimers previously thought to be nonexistent, except for combinations containing β5. A second screen on coupling preference of all G-protein heterotrimers to NTR1 wild type and a stabilized mutant indicated a preference for those Gαi1βγ combinations containing γ1and γ11. Heterotrimeric G proteins, including combinations believed to be nonexistent, were purified, and complexes with the GPCR were prepared. Our results shed new light on the combinatorial diversity of G proteins and their coupling to GPCRs and open new approaches to improve the stability of GPCR/G-protein complexes.


Sign in / Sign up

Export Citation Format

Share Document