Faculty Opinions recommendation of Mucosal innate immune response associated with a timely humoral immune response and slower disease progression after oral transmission of simian immunodeficiency virus to rhesus macaques.

Author(s):  
Leonidas Stamatatos
2007 ◽  
Vol 81 (12) ◽  
pp. 6175-6186 ◽  
Author(s):  
Jeffrey M. Milush ◽  
Kelly Stefano-Cole ◽  
Kimberli Schmidt ◽  
Andre Durudas ◽  
Ivona Pandrea ◽  
...  

ABSTRACT Mucosal transmission is the predominant mode of human immunodeficiency virus (HIV) infection worldwide, and the mucosal innate interferon response represents an important component of the earliest host response to the infection. Our goal here was to assess the changes in mRNA expression of innate mucosal genes after oral simian immunodeficiency virus (SIV) inoculation of rhesus macaques (Macaca mulatta) that were followed throughout their course of disease progression. The SIV plasma viral load was highest in the macaque that progressed rapidly to simian AIDS (99 days) and lowest in the macaque that progressed more slowly (>700 days). The mRNA levels of six innate/effector genes in the oral mucosa indicated that slower disease progression was associated with increased expression of these genes. This distinction was most evident when comparing the slowest-progressing macaque to the intermediate and rapid progressors. Expression levels of alpha and gamma interferons, the antiviral interferon-stimulated gene product 2′-5′ oligoadenylate synthetase (OAS), and the chemokines CXCL9 and CXCL10 in the slow progressor were elevated at each of the three oral mucosal biopsy time points examined (day 2 to 4, 14 to 21, and day 70 postinfection). In contrast, the more rapidly progressing macaques demonstrated elevated levels of these cytokine/chemokine mRNA at lymph nodes, coincident with decreased levels at the mucosal sites, and a decreased ability to elicit an effective anti-SIV antibody response. These data provide evidence that a robust mucosal innate/effector immune response is beneficial following lentiviral exposure; however, it is likely that the anatomical location and timing of the response need to be coordinated to permit an effective immune response able to delay progression to simian AIDS.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jacintha G. B. van Dijk ◽  
Josanne H. Verhagen ◽  
Arne Hegemann ◽  
Conny Tolf ◽  
Jenny Olofsson ◽  
...  

Domestic mallards (Anas platyrhynchos domesticus) are traditionally used as a model to investigate infection dynamics and immune responses to low pathogenic avian influenza viruses (LPAIVs) in free-living mallards. However, it is unclear whether the immune response of domestic birds reflects the response of their free-living counterparts naturally exposed to these viruses. We investigated the extent to which the innate humoral immune response was similar among (i) wild-type domestic mallards in primary and secondary infection with LPAIV H4N6 in a laboratory setting (laboratory mallards), (ii) wild-type domestic mallards naturally exposed to LPAIVs in a semi-natural setting (sentinel mallards), and (iii) free-living mallards naturally exposed to LPAIVs. We quantified innate humoral immune function by measuring non-specific natural antibodies (agglutination), complement activity (lysis), and the acute phase protein haptoglobin. We demonstrate that complement activity in the first 3 days after LPAIV exposure was higher in primary-exposed laboratory mallards than in sentinel and free-living mallards. LPAIV H4N6 likely activated the complement system and the acute phase response in primary-exposed laboratory mallards, as lysis was higher and haptoglobin lower at day 3 and 7 post-exposure compared to baseline immune function measured prior to exposure. There were no differences observed in natural antibody and haptoglobin concentrations among laboratory, sentinel, and free-living mallards in the first 3 days after LPAIV exposure. Our study demonstrates that, based on the three innate humoral immune parameters measured, domestic mallards seem an appropriate model to investigate innate immunology of their free-living counterparts, albeit the innate immune response of secondary-LPAIV exposed mallards is a better proxy for the innate immune response in pre-exposed free-living mallards than that of immunologically naïve mallards.


Author(s):  
L. F. Stovba ◽  
V. T. Krotkov ◽  
D. I. Paveli’ev ◽  
S. A. Mel’nikov ◽  
V. N. Lebedev ◽  
...  

The review presents the results of preclinical use of vector vaccines against human immunodeficiency virus (HIV) disease and simian immunodeficiency virus (SIV) disease. Application of antiretroviral therapy exclusively is insufficient for elimination of HIV from patient’s body. This dictates the need for an effective vaccine which will reduce the number of new cases of the disease and reduce the risk of virus transmission. Current practice of medicinal product development showed the effectiveness of heterologous prime-boost regimens for the induction of expressed immune response in laboratory animals. Various vector constructs were used as priming vaccines: DNA vaccines, Bacille Calmette-Guerin vaccine, chimpanzee adenovirus, vesicular stomatitis virus, alphavirus repli-clone. Booster vaccine was represented by recombinant MVA strain. In all vector vaccines, different genes of immunodominant antigens of HIV and SIV agents were inserted. On rhesus macaques, murine, rabbit models, it was demonstrated that deployed vaccination schemes were safe and induced immune response. Because membrane HIV protein is highly variable, strongly glycoziled and subjected to structural changes during receptor binding, it cannot be viewed as a target for induction of virus neutralized antibodies. Therefore, we mainly studied the cell immune response that was presented by poly-functional CD8+ T-cells. However, some recent researches are aimed at such modification of envelope HIV immunogene that would provide for virus neutralizing antibody induction. The study of protective efficiency of the induced immunity in rhesus macaques, immunized with recombinant vectors expressing SIV’ s immunodominant antigens, in case of subsequent inoculation with virulent SIV strain has revealed that all monkeys developed illness. Assuming that the constructions with SIV’ s immunodominant antigens under protective efficiency testing on rhesus macaques imitate AIDS in humans, it seems that vaccines, developed up-to-date, will not be effective for collective immunity formation against AIDS. Therefore, the search for novel combinations of expressed immunodominant antigens for the inclusion into the composition of priming and booster vaccines remains a priority area at present time.


PLoS ONE ◽  
2006 ◽  
Vol 1 (1) ◽  
pp. e135 ◽  
Author(s):  
Priya Chikhlikar ◽  
Luciana Barros de Arruda ◽  
Milton Maciel ◽  
Peter Silvera ◽  
Mark G. Lewis ◽  
...  

2006 ◽  
Vol 81 (1) ◽  
pp. 406-410 ◽  
Author(s):  
Jason A. Wojcechowskyj ◽  
Levi J. Yant ◽  
Roger W. Wiseman ◽  
Shelby L. O'Connor ◽  
David H. O'Connor

ABSTRACT It is well established that host genetics, especially major histocompatibility complex (MHC) genes, are important determinants of human immunodeficiency virus disease progression. Studies with simian immunodeficiency virus (SIV)-infected Indian rhesus macaques have associated Mamu-B*17 with control of virus replication. Using microsatellite haplotyping of the 5-Mb MHC region, we compared disease progression among SIVmac239-infected Indian rhesus macaques that possess Mamu-B*17-containing MHC haplotypes that are identical by descent. We discovered that SIV-infected animals possessing identical Mamu-B*17-containing haplotypes had widely divergent disease courses. Our results demonstrate that the inheritance of a particular Mamu-B*17-containing haplotype is not sufficient to predict SIV disease outcome.


2014 ◽  
Vol 30 (12) ◽  
pp. 1216-1225 ◽  
Author(s):  
Angela M. Amedee ◽  
Whitney A. Nichols ◽  
Nicole J. LeCapitaine ◽  
Curtis Vande Stouwe ◽  
Leslie L. Birke ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 984
Author(s):  
Simões ◽  
LaVoy ◽  
Dean

Regulatory T cells (Treg) are key players in the maintenance of peripheral tolerance, preventing autoimmune diseases and restraining chronic inflammatory diseases. Evidence suggests Treg cells and NK cells have important roles in feline immunodeficiency virus (FIV) pathogenesis; however, in vivo studies investigating the interplay between these two cell populations are lacking. We previously described innate immune defects in FIV-infected cats characterized by cytokine deficits and impaired natural killer cell (NK) and NK T cell (NKT) functions. In this study, we investigated whether in vivo Treg depletion by treatment with an anti-feline CD25 monoclonal antibody would improve the innate immune response against subcutaneous challenge with Listeria monocytogenes (Lm). Treg depletion resulted in an increased overall number of cells in Lm-draining lymph nodes and increased proliferation of NK and NKT cells in FIV-infected cats. Treg depletion did not normalize expression of perforin or granzyme A by NK and NKT cells, nor did Treg depletion result in improved clearance of Lm. Thus, despite the quantitative improvements in the NK and NKT cell responses to Lm, there was no functional improvement in the early control of Lm. CD1a+ dendritic cell percentages in the lymph nodes of FIV-infected cats were lower than in specific-pathogen-free control cats and failed to upregulate CD80 even when Treg were depleted. Taken together, Treg depletion failed to improve the innate immune response of FIV-infected cats against Lm and this may be due to dendritic cell dysfunction.


Sign in / Sign up

Export Citation Format

Share Document