Faculty Opinions recommendation of CXCR2 agonists in ADPKD liver cyst fluids promote cell proliferation.

Author(s):  
Shannon Glaser
2008 ◽  
Vol 294 (3) ◽  
pp. C786-C796 ◽  
Author(s):  
Claudia R. Amura ◽  
Kelley S. Brodsky ◽  
Berenice Gitomer ◽  
Kim McFann ◽  
Gwendal Lazennec ◽  
...  

Autosomal dominant polycystic kidney disease (ADPKD) is a highly prevalent genetic disease that results in cyst formation in kidney and liver. Cytokines and growth factors secreted by the cyst-lining epithelia are positioned to initiate autocrine/paracrine signaling and promote cyst growth. Comparative analyses of human kidney and liver cyst fluids revealed disparate cytokine/growth factor profiles. CXCR2 agonists, including IL-8, epithelial neutrophil-activating peptide (ENA-78), growth-related oncogene-α (GRO-α), are potent proliferative agents that were found at high levels in liver but not kidney cyst fluids. Liver cysts are lined by epithelial cells derived from the intrahepatic bile duct (i.e., cholangiocytes). In polarized pkd2(WS25/−) mouse liver cyst epithelial monolayers, CXCR2 agonists were released both apically and basally, indicating that they may act both on the endothelial and epithelial cells within or lining the cyst wall. IL-8 and human liver cyst fluid induced cell proliferation of HMEC-1 cells, a human microvascular endothelial cell line, and Mz-ChA1 cells, a human cholangiocyte cell model. IL-8 expression can be regulated by specific stresses. Hypoxia and mechanical stretch, two likely stressors acting on the liver cyst epithelia, significantly increased IL-8 secretion and promoter activity. AP-1, c/EBP, and NF-κB were required but not sufficient to drive the stress-induced increase in IL-8 transcription. An upstream element between −272 and −1,481 bp allowed for the stress-induced increase in IL-8 transcription. These studies support the hypothesis that CXCR2 signaling promotes ADPKD liver cyst growth.


2018 ◽  
Vol 19 (10) ◽  
pp. 3153 ◽  
Author(s):  
J. Muñoz-Bello ◽  
Leslie Olmedo-Nieva ◽  
Leonardo Castro-Muñoz ◽  
Joaquín Manzo-Merino ◽  
Adriana Contreras-Paredes ◽  
...  

The Wnt/β-catenin signaling pathway regulates cell proliferation and differentiation and its aberrant activation in cervical cancer has been described. Persistent infection with high risk human papillomavirus (HR-HPV) is the most important factor for the development of this neoplasia, since E6 and E7 viral oncoproteins alter cellular processes, promoting cervical cancer development. A role of HPV-16 E6 in Wnt/β-catenin signaling has been proposed, although the participation of HPV-18 E6 has not been previously studied. The aim of this work was to investigate the participation of HPV-18 E6 and E6*I, in the regulation of the Wnt/β-catenin signaling pathway. Here, we show that E6 proteins up-regulate TCF-4 transcriptional activity and promote overexpression of Wnt target genes. In addition, it was demonstrated that E6 and E6*I bind to the TCF-4 (T cell factor 4) and β-catenin, impacting TCF-4 stabilization. We found that both E6 and E6*I proteins interact with the promoter of Sp5, in vitro and in vivo. Moreover, although differences in TCF-4 transcriptional activation were found among E6 intratype variants, no changes were observed in the levels of regulated genes. Furthermore, our data support that E6 proteins cooperate with β-catenin to promote cell proliferation.


2003 ◽  
Vol 77 (10) ◽  
pp. 6066-6069 ◽  
Author(s):  
Allison H. S. Hall ◽  
Kenneth A. Alexander

ABSTRACT The human papillomavirus oncoproteins E6 and E7 promote cell proliferation and contribute to carcinogenesis by interfering with the activities of cellular tumor suppressors. We used a small interfering RNA molecule targeting the E7 region of the bicistronic E6 and E7 mRNA to induce RNA interference, thereby reducing expression of E6 and E7 in HeLa cells. RNA interference of E6 and E7 also inhibited cellular DNA synthesis and induced morphological and biochemical changes characteristic of cellular senescence. These results demonstrate that reducing E6 and E7 expression is sufficient to cause HeLa cells to become senescent.


Sign in / Sign up

Export Citation Format

Share Document