Faculty Opinions recommendation of Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.

Author(s):  
Christopher Gregg
2016 ◽  
Vol 48 (11) ◽  
pp. 1430-1435 ◽  
Author(s):  
Björn Reinius ◽  
Jeff E Mold ◽  
Daniel Ramsköld ◽  
Qiaolin Deng ◽  
Per Johnsson ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 311
Author(s):  
Zhenqiu Liu

Single-cell RNA-seq (scRNA-seq) is a powerful tool to measure the expression patterns of individual cells and discover heterogeneity and functional diversity among cell populations. Due to variability, it is challenging to analyze such data efficiently. Many clustering methods have been developed using at least one free parameter. Different choices for free parameters may lead to substantially different visualizations and clusters. Tuning free parameters is also time consuming. Thus there is need for a simple, robust, and efficient clustering method. In this paper, we propose a new regularized Gaussian graphical clustering (RGGC) method for scRNA-seq data. RGGC is based on high-order (partial) correlations and subspace learning, and is robust over a wide-range of a regularized parameter λ. Therefore, we can simply set λ=2 or λ=log(p) for AIC (Akaike information criterion) or BIC (Bayesian information criterion) without cross-validation. Cell subpopulations are discovered by the Louvain community detection algorithm that determines the number of clusters automatically. There is no free parameter to be tuned with RGGC. When evaluated with simulated and benchmark scRNA-seq data sets against widely used methods, RGGC is computationally efficient and one of the top performers. It can detect inter-sample cell heterogeneity, when applied to glioblastoma scRNA-seq data.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Garth R. Ilsley ◽  
Ritsuko Suyama ◽  
Takeshi Noda ◽  
Nori Satoh ◽  
Nicholas M. Luscombe

2018 ◽  
Author(s):  
Kwangbom Choi ◽  
Narayanan Raghupathy ◽  
Gary A. Churchill

Allele-specific expression (ASE) at single-cell resolution is a critical tool for understanding the stochastic and dynamic features of gene expression. However, low read coverage and high biological variability present challenges for analyzing ASE. We propose a new method for ASE analysis from single cell RNA-Seq data that accurately classifies allelic expression states and improves estimation of allelic proportions by pooling information across cells.


2020 ◽  
Author(s):  
Timothy J. Durham ◽  
Riza M. Daza ◽  
Louis Gevirtzman ◽  
Darren A. Cusanovich ◽  
William Stafford Noble ◽  
...  

AbstractRecently developed single cell technologies allow researchers to characterize cell states at ever greater resolution and scale. C. elegans is a particularly tractable system for studying development, and recent single cell RNA-seq studies characterized the gene expression patterns for nearly every cell type in the embryo and at the second larval stage (L2). Gene expression patterns are useful for learning about gene function and give insight into the biochemical state of different cell types; however, in order to understand these cell types, we must also determine how these gene expression levels are regulated. We present the first single cell ATAC-seq study in C. elegans. We collected data in L2 larvae to match the available single cell RNA-seq data set, and we identify tissue-specific chromatin accessibility patterns that align well with existing data, including the L2 single cell RNA-seq results. Using a novel implementation of the latent Dirichlet allocation algorithm, we leverage the single-cell resolution of the sci-ATAC-seq data to identify accessible loci at the level of individual cell types, providing new maps of putative cell type-specific gene regulatory sites, with promise for better understanding of cellular differentiation and gene regulation in the worm.


2016 ◽  
Author(s):  
Ning Leng ◽  
Li-Fang Chu ◽  
Jeea Choi ◽  
Christina Kendziorski ◽  
James A. Thomson ◽  
...  

AbstractMotivationWith the development of single cell RNA-seq (scRNA-seq) technology, scRNA-seq experiments with ordered conditions (e.g. time-course) are becoming common. Methods developed for analyzing ordered bulk RNA-seq experiments are not applicable to scRNA-seq, since their distributional assumptions are often violated by additional heterogeneities prevalent in scRNA-seq. Here we present SC-Pattern - an empirical Bayes model to characterize genes with expression changes in ordered scRNA-seq experiments. SCPattern utilizes the non-parametrical Kolmogorov-Smirnov statistic, thus it has the flexibility to identify genes with a wide variety of types of changes. Additionally, the Bayes framework allows SCPattern to classify genes into expression patterns with probability estimates.ResultsSimulation results show that SCPattern is well powered for identifying genes with expression changes while the false discovery rate is well controlled. SCPattern is also able to accurately classify these dynamic genes into directional expression patterns. Applied to a scRNA-seq time course dataset studying human embryonic cell differentiation, SCPattern detected a group of important genes that are involved in mesendoderm and definitive endoderm cell fate decisions, positional patterning, and cell cycle.Availability and ImplementationThe SCPattern is implemented as an R package along with a user-friendly graphical interface, which are available at:https://github.com/lengning/SCPatternContact:[email protected]


2020 ◽  
Author(s):  
Jiaxin Fan ◽  
Xuran Wang ◽  
Rui Xiao ◽  
Mingyao Li

AbstractAllelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provided a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases.Author SummaryDetection of allelic expression imbalance (AEI), a phenomenon where the two alleles of a gene differ in their expression magnitude, is a key step towards the understanding of phenotypic variations among individuals. Existing methods detect AEI use bulk RNA sequencing (RNA-seq) data and ignore AEI variations among different cell types. Although single-cell RNA sequencing (scRNA-seq) has enabled the characterization of cell-to-cell heterogeneity in gene expression, the high costs have limited its application in AEI analysis. To overcome this limitation, we developed BSCET to characterize cell-type-specific AEI using the widely available bulk RNA-seq data by integrating cell-type composition information inferred from scRNA-seq samples. Since the degree of AEI may vary with disease phenotypes, we further extended BSCET to detect genes whose cell-type-specific AEIs are associated with clinical factors. Through extensive benchmark evaluations and analyses of two pancreatic islet bulk RNA-seq datasets, we demonstrated BSCET’s ability to refine bulk-level AEI to cell-type resolution, and to identify genes whose cell-type-specific AEIs are associated with the progression of type 2 diabetes. With the vast amount of easily accessible bulk RNA-seq data, we believe BSCET will be a valuable tool for elucidating cell type contributions in human diseases.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009080
Author(s):  
Jiaxin Fan ◽  
Xuran Wang ◽  
Rui Xiao ◽  
Mingyao Li

Allelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provided a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1395-1395
Author(s):  
Andre Olsson ◽  
H. Leighton Grimes ◽  
Virendra K Chaudhri ◽  
Philip Dexheimer ◽  
Bruce J Aronow ◽  
...  

Abstract In spite of tremendous advances in the analysis of hematopoietic progenitors and transcription factors that give rise to different lineages, molecular insight into the mechanisms that underlie cell fate choice at the level of individual cells is lacking. We utilized single-cell RNA sequencing of murine granulocyte-monocyte progenitors (GMPs) to analyze the molecular basis of cell fate choice. Over 200 libraries were generated with average read depths of 4 million per library and an expressed gene call of over 3,800 genes with FPKM >3. Our data reveal a varied but coherent spectrum of gene expression patterns in individual murine GMPs. The majority of cells could be clustered into ones expressing either granulocytic or monocytic genes, suggesting that they were primed for lineage determination. A minority of GMPs expressed a mixed-lineage pattern of genes. The single-cell data suggested an antagonistic transcription factor circuit involving Gfi1 and IRF8 that was validated with both loss- and gain-of-function experiments in GMPs. Our data highlight the utility of single cell RNA-Seq analysis to reveal molecular mechanisms controlling lineage fate decisions in hematopoiesis. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Verboom Karen ◽  
Everaert Celine ◽  
Bolduc Nathalie ◽  
Livak J. Kenneth ◽  
Yigit Nurten ◽  
...  

AbstractSingle cell RNA sequencing methods have been increasingly used to understand cellular heterogeneity. Nevertheless, most of these methods suffer from one or more limitations, such as focusing only on polyadenylated RNA, sequencing of only the 3’ end of the transcript, an exuberant fraction of reads mapping to ribosomal RNA, and the unstranded nature of the sequencing data. Here, we developed a novel single cell strand-specific total RNA library preparation method addressing all the aforementioned shortcomings. Our method was validated on a microfluidics system using three different cancer cell lines undergoing a chemical or genetic perturbation. We demonstrate that our total RNA-seq method detects an equal or higher number of genes compared to classic polyA[+] RNA-seq, including novel and non-polyadenylated genes. The obtained RNA expression patterns also recapitulate the expected biological signal. Inherent to total RNA-seq, our method is also able to detect circular RNAs. Taken together, SMARTer single cell total RNA sequencing is very well suited for any single cell sequencing experiment in which transcript level information is needed beyond polyadenylated genes.


Sign in / Sign up

Export Citation Format

Share Document