Faculty Opinions recommendation of Identification of piRNA Binding Sites Reveals the Argonaute Regulatory Landscape of the C. elegans Germline.

Author(s):  
Peter Boag
Cell ◽  
2018 ◽  
Vol 172 (5) ◽  
pp. 937-951.e18 ◽  
Author(s):  
En-Zhi Shen ◽  
Hao Chen ◽  
Ahmet R. Ozturk ◽  
Shikui Tu ◽  
Masaki Shirayama ◽  
...  

2018 ◽  
Author(s):  
En-Zhi Shen ◽  
Hao Chen ◽  
Ahmet R. Ozturk ◽  
Shikui Tu ◽  
Masaki Shirayama ◽  
...  

SUMMARYpiRNAs (Piwi-interacting small RNAs) engage Piwi Argonautes to silence transposons and promote fertility in animal germlines. Genetic and computational studies have suggested that C. elegans piRNAs tolerate mismatched pairing and in principle could target every transcript. Here we employ in vivo cross-linking to identify transcriptome-wide interactions between piRNAs and target RNAs. We show that piRNAs engage all germline mRNAs and that piRNA binding follows microRNA-like pairing rules. Targeting correlates better with binding energy than with piRNA abundance, suggesting that piRNA concentration does not limit targeting. In mRNAs silenced by piRNAs, secondary small RNAs accumulate at the center and ends of piRNA binding sites. In germline-expressed mRNAs, however, targeting by the CSR-1 Argonaute correlates with reduced piRNA binding density and suppression of piRNA-associated secondary small RNAs. Our findings reveal physiologically important and nuanced regulation of individual piRNA targets and provide evidence for a comprehensive post transcriptional regulatory step in germline gene expression.


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1373-1383 ◽  
Author(s):  
S. Christensen ◽  
V. Kodoyianni ◽  
M. Bosenberg ◽  
L. Friedman ◽  
J. Kimble

The homologous receptors LIN-12 and GLP-1 mediate diverse cell-signaling events during development of the nematode Caenorhabditis elegans. These two receptors appear to be functionally interchangeable and have sequence similarity to Drosophila Notch. Here we focus on a molecular analysis of the lag-1 gene (lin-12 -and glp-1), which plays a central role in LIN-12 and GLP-1-mediated signal transduction. We find that the predicted LAG-1 protein is homologous to two DNA-binding proteins: human C Promoter Binding Factor (CBF1) and Drosophila Suppressor of Hairless (Su(H)). Furthermore, we show that LAG-1 binds specifically to the DNA sequence RTGGGAA, previously identified as a CBF-1/Su(H)-binding site. Finally, we report that the 5′ flanking regions and first introns of the lin-12, glp-1 and lag-1 genes are enriched for potential LAG-1-binding sites. We propose that LAG-1 is a transcriptional regulator that serves as a primary link between the LIN-12 and GLP-1 receptors and downstream target genes in C. elegans. In addition, we propose that LAG-1 may be a key component of a positive feedback loop that amplifies activity of the LIN-12/GLP-1 pathway.


2019 ◽  
Vol 4 (Spring 2019) ◽  
Author(s):  
Alexa Vandenburg

The Norris lab recently identified two RNA binding proteins required for proper neuron-specific splicing. The lab conducted touch- response behavioral assays to assess the function of these proteins in touch-sensing neurons. After isolating C. elegans worms with specific phenotypes, the lab used automated computer tracking and video analysis to record the worms’ behavior. The behavior of mutant worms differed from that of wild-type worms. The Norris lab also discovered two possible RNA binding protein sites in SAD-1, a neuronal gene implicated in the neuronal development of C. elegans1. These two binding sites may control the splicing of SAD-1. The lab transferred mutated DNA into the genome of wild-type worms by injecting a mutated plasmid. The newly transformed worms fluoresced green, indicating that the two binding sites control SAD-1 splicing.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Carla Lloret-Fernández ◽  
Miren Maicas ◽  
Carlos Mora-Martínez ◽  
Alejandro Artacho ◽  
Ángela Jimeno-Martín ◽  
...  

Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis-regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans. Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years.


1989 ◽  
Vol 260 (3) ◽  
pp. 923-926 ◽  
Author(s):  
J M Schaeffer ◽  
A R Bergstrom ◽  
M J Turner

MK-801, an N-methyl-D-aspartate antagonist in mammalian brain tissue, is a potent nematocidal agent. Specific MK-801 binding sites have been identified and characterized in a membrane fraction prepared from the free-living nematode Caenorhabditis elegans. The high-affinity MK-801 binding site has an apparent dissociation constant, Kd, of 225 nM. Unlike the MK-801 binding site in mammalian tissues, the C. elegans binding site is not effected by glutamate or glycine, and polyamines are potent inhibitors of specific MK-801 binding.


Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3367-3379 ◽  
Author(s):  
Eve Stringham ◽  
Nathalie Pujol ◽  
Joel Vandekerckhove ◽  
Thierry Bogaert

Cell migration and outgrowth are thought to be based on analogous mechanisms that require repeated cycles of process extension, reading and integration of multiple directional signals, followed by stabilisation in a preferred direction, and renewed extension. We have characterised a C. elegans gene, unc-53, that appears to act cell autonomously in the migration and outgrowth of muscles, axons and excretory canals. Abrogation of unc-53 function disrupts anteroposterior outgrowth in those cells that normally express the gene. Conversely, overexpression of unc-53 in bodywall muscles leads to exaggerated outgrowth. UNC-53 is a novel protein conserved in vertebrates that contains putative SH3- and actin-binding sites. unc-53 interacts genetically with sem-5 and we demonstrated a direct interaction in vitro between UNC-53 and the SH2-SH3 adaptor protein SEM-5/GRB2. Thus, unc-53 is involved in longitudinal navigation and might act by linking extracellular guidance cues to the intracellular cytoskeleton.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Wenke Wang ◽  
Amaresh Chaturbedi ◽  
Minghui Wang ◽  
Serim An ◽  
Satheeja Santhi Velayudhan ◽  
...  

C. elegans SET-9 and SET-26 are highly homologous paralogs that share redundant functions in germline development, but SET-26 alone plays a key role in longevity and heat stress response. Whereas SET-26 is broadly expressed, SET-9 is only detectable in the germline, which likely accounts for their different biological roles. SET-9 and SET-26 bind to H3K4me3 with adjacent acetylation marks in vitro and in vivo. In the soma, SET-26 acts through DAF-16 to modulate longevity. In the germline, SET-9 and SET-26 restrict H3K4me3 domains around SET-9 and SET-26 binding sites, and regulate the expression of specific target genes, with critical consequence on germline development. SET-9 and SET-26 are highly conserved and our findings provide new insights into the functions of these H3K4me3 readers in germline development and longevity.


Sign in / Sign up

Export Citation Format

Share Document