scholarly journals Faculty Opinions recommendation of Influence of additive manufactured scaffold architecture on the distribution of surface strains and fluid flow shear stresses and expected osteochondral cell differentiation.

Author(s):  
Warren Grayson
2007 ◽  
Vol 30 (4) ◽  
pp. 90 ◽  
Author(s):  
Kenneth A. Myers ◽  
Jerome B. Rattner ◽  
Nigel G. Shrive ◽  
David A. Hart

Introduction: A limited understanding of the cellular mechanisms governing bone mechanotransduction has inhibited the development of clinical treatments for a variety of bone disorders, including osteoporosis, osteoarthritis and microgravity-associated bone atrophy. The cytoskeleton is thought to play a role in cellular mechanotransduction, however the exact mechanism in bone cells has not yet been clearly elucidated. Studies involving cytoskeletal inhibitors have not generally considered secondary effects on cellular organelles such as the primary cilia. These cellular projections could account for the disparity between shear stresses predicted to occur in vivo and the minimum threshold of membrane deformation required to elicit a cellular response in vitro. Methods: MG-63 (human osteoblast-like) cells were cultured in vitro. Cultures were exposed to intermittent cyclic fluid flow shear stress (1 Pa amplitude), for 8 or 12 hrs. Some cultures were loaded in the presence of nocodazole (a microtubule inhibitor) or cytochalasin D (an actin filament inhibitor). The cellular response was analyzed through RT-PCR assessment of messenger RNA levels for specific molecules related to matrix metabolism. The effects of drug treatments on cytoskeletal disorganization and the primary cilia were assessed with immunocytochemistry and electron microscopy. Results: In untreated cultures, shear stress was associated with significant increases in mRNA levels for collagen I and matrix metalloproteinases 1 and 3, for both time points assessed. These increases were maintained in cultures loaded in the presence of cytochalasin D, but were almost completely abrogated in nocodazole-treated cultures. Cytoskeletal inhibitors exerted some dose-dependent effects on length and structure of primary cilia in MG-63 cells. Conclusions: The microtubule network appears to be necessary for some shear-induced responses of osteoblast-like cells. MG-63 cells possess primary cilia, organelles that could amplify fluid flow shear, accounting for some apparent contradictions between studies related to osteoblast mechanosensitivity. Since these structures are composed of microtubules, the observation that microtubule disruptors inhibit the shear response of osteoblast-like cells suggests the primary cilium may have a role in osteoblast mechanotransduction. The effects of cytoskeletal inhibitors on cilium structure may explain the conflicting results of earlier mechanotransduction studies.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (2) ◽  
pp. 429-439 ◽  
Author(s):  
R. Sinha ◽  
S. Le Gac ◽  
N. Verdonschot ◽  
A. van den Berg ◽  
B. Koopman ◽  
...  
Keyword(s):  

A device is reported to screen for the effects on cells of all combinations of five surface strains and five fluid-flow shear stresses, each with four replicates (total 100 units).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prasanna Padmanaban ◽  
Ata Chizari ◽  
Tom Knop ◽  
Jiena Zhang ◽  
Vasileios D. Trikalitis ◽  
...  

AbstractFluid flow shear stresses are strong regulators for directing the organization of vascular networks. Knowledge of structural and flow dynamics information within complex vasculature is essential for tuning the vascular organization within engineered tissues, by manipulating flows. However, reported investigations of vascular organization and their associated flow dynamics within complex vasculature over time are limited, due to limitations in the available physiological pre-clinical models, and the optical inaccessibility and aseptic nature of these models. Here, we developed laser speckle contrast imaging (LSCI) and side-stream dark field microscopy (SDF) systems to map the vascular organization, spatio-temporal blood flow fluctuations as well as erythrocytes movements within individual blood vessels of developing chick embryo, cultured within an artificial eggshell system. By combining imaging data and computational simulations, we estimated fluid flow shear stresses within multiscale vasculature of varying complexity. Furthermore, we demonstrated the LSCI compatibility with bioengineered perfusable muscle tissue constructs, fabricated via molding techniques. The presented application of LSCI and SDF on perfusable tissues enables us to study the flow perfusion effects in a non-invasive fashion. The gained knowledge can help to use fluid perfusion in order to tune and control multiscale vascular organization within engineered tissues.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3128
Author(s):  
Thomas R. Coughlin ◽  
Ali Sana ◽  
Kevin Voss ◽  
Abhilash Gadi ◽  
Upal Basu-Roy ◽  
...  

Osteosarcoma (OS) is an aggressive bone cancer originating in the mesenchymal lineage. Prognosis for metastatic disease is poor, with a mortality rate of approximately 40%; OS is an aggressive disease for which new treatments are needed. All bone cells are sensitive to their mechanical/physical surroundings and changes in these surroundings can affect their behavior. However, it is not well understood how OS cells specifically respond to fluid movement, or substrate stiffness—two stimuli of relevance in the tumor microenvironment. We used cells from spontaneous OS tumors in a mouse engineered to have a bone-specific knockout of pRb-1 and p53 in the osteoblast lineage. We silenced Sox2 (which regulates YAP) and tested the effect of fluid flow shear stress (FFSS) and substrate stiffness on YAP expression/activity—which was significantly reduced by loss of Sox2, but that effect was reversed by FFSS but not by substrate stiffness. Osteogenic gene expression was also reduced in the absence of Sox2 but again this was reversed by FFSS and remained largely unaffected by substrate stiffness. Thus we described the effect of two distinct stimuli on the mechanosensory and osteogenic profiles of OS cells. Taken together, these data suggest that modulation of fluid movement through, or stiffness levels within, OS tumors could represent a novel consideration in the development of new treatments to prevent their progression.


2020 ◽  
Vol 4 (2) ◽  
pp. 026107
Author(s):  
David Elad ◽  
Uri Zaretsky ◽  
Tatyana Kuperman ◽  
Mark Gavriel ◽  
Mian Long ◽  
...  

Author(s):  
Sayan Mondal ◽  
Chun Yang ◽  
Joseph D. Petruccelli ◽  
Chun Yuan ◽  
Fei Liu ◽  
...  

It has been well-accepted that atherosclerosis initiation and progression correlate positively with low and oscillating flow wall shear stresses. However, this shear stress mechanism cannot fully explain why advanced plaques continue to grow under elevated flow shear stress conditions. Our previous investigations using 3D computational models with fluid-structure interactions (FSI) based on in vivo/ex vivo magnetic resonance images (MRI) of human carotid atherosclerotic plaques indicated that there is a negative correlation between advanced plaque wall thickness and structural maximum principal stress (Stress-P1) in the plaque and a positive correlation between plaque wall thickness and flow shear stress [3].


Author(s):  
Chun Yang ◽  
Gador Canton ◽  
Chun Yuan ◽  
Thomas Hatsukami ◽  
Dalin Tang

It has been well accepted that low and oscillating blood flow shear stresses (LFSS) correlate positively with intimal thickening and atherosclerosis initiation [1,2]. However, the LFSS hypothesis cannot explain why advanced plaques continue to grow under elevated high flow shear stress conditions [3]. For patient tracking studies, plaque progression is often measured by the difference of plaque geometries between two scans (“past” and “current” scans) when medical imaging is used. Mechanical flow shear stress (FSS) and plaque wall stress (PWS) conditions from the two scans may have different correlations with plaque progression. Using 2D structure models based on in vivo magnetic resonance imaging (MRI) human carotid plaques, Tang et al. showed that 18 out of 21 patients had significant negative correlation between plaque progression measured by wall thickness increase (WTI) and plaque wall stress from current scan [3]. The correlation was reversed when plaque wall stress from past scan was used. In this paper, 3D fluid-structure interactions (FSI) models for 32 matched “past-current” scan pairs of human atherosclerotic carotid plaques based on in vivo MRI data were solved and plaque wall stress (PWS) and flow shear stress (FSS) data were obtained to quantify their correlations with plaque progression measured by WTI.


Author(s):  
Xuanhao Sun ◽  
Vipuil Kishore ◽  
Kateri Fites ◽  
Ozan Akkus

Bone cells are responsible for sensing and converting the mechanical signals into cellular signals to drive bone adaptation and damage repair [1]. Cell-mediated repair of bone is reported to be in preferential association with regions filled with microdamage [2]. Although different theories have been proposed for mechanisms involved in those processes (such as substrate deformation, fluid flow shear, and hydrostatic pressure in mechanotransduction [3], or microcrack and osteocyte apoptosis in damage detection [4]), knowledge on the exact form of physical stimuli which trigger bone cells, especially in critically loaded regions of bone, is still elusive.


Sign in / Sign up

Export Citation Format

Share Document