scholarly journals Daily behaviour of Hungarian Grey Cattle under range grazing conditions

2013 ◽  
pp. 45-48
Author(s):  
András Halász ◽  
Géza Nagy

Cattle behaviour on rangeland depends on external factors, such as grass allowance and quality, temperature, net solar radiation, distance from water-source, wind speed and direction, air pressure changes and the applied breeding technology. Our research is based on previous empirical observations and modern methods to analyze the behaviour of the Hungarian Grey Cattle. Today it is crucial to use cost-effective solutions in modern beef cattle farming therefore we introduce a cost-efficient method to study and follow cattle herds. We are studying relation between traveled daily distance and air pressure. The various weather fronts influence behavioural characteristics and traveled daily distance. According to our hypothesis, the pressure-change and the wind direction has significant effect on cattle activity on pasture. As the different air masses alter the barometric conditions and unbalance the neuroendocrine system, indirectly cause relaxed or agitated behaviour

Author(s):  
N.N. Usmanov ◽  
D.L. Stolyarov ◽  
I.R. Prudnikov ◽  
V.Y. Ivanov ◽  
A.M. Saletsky

The possibility of practical application of the results of investigations of air environmental pressure changes in the vicinity of a conductor in which electric current flows is shown. The one-to-one match of environmental pressure changes to alterations of electric current can be applied under transfer of a regulated movement to mobile parts of micro and nanodevices. In accordance with the trends in the development of fields science and industry that require precision accuracy, the modes of small controlled movements of working parts are of greatest interest. When the same current pulses are fed into electric circuit of the described device, the rapid alterations of the pressure are well repeated. The correspondence is observed in a wide range of electric current amplitude and pressure values. The observed peculiarities of the pressure change were used for a regulated shift of the miniaturized holder. In the experiments, when the current in the conductor was altered, the air pressure in the pipe changed resulting in the motion of membrane and the holder that was fixed on it. Small shifts were monitored in microscope. For a convenience to watch the movements of the holder, a glass plate with a defect was placed beneath the holder. Upon a start of a current pulse, the pressure in the working pipe volume increased and by the action onto the elastic membrane caused the movement of the holder fixed on the membrane. When the pulse started, the holder rapidly reached a maximal value of the shift. After reaching the maximal value of the shift, the position of the holder remained almost unchangeable. After turning off the current pulse the holder went back to its original position. The controlled motion of the holder shown in the paper is in the range from less than 2 up to 200 microns. At lower values of pulse current amplitudes, the movement of the holder is less. The consistency of the results was determined solely by the parameters of the electric current pulse. The movements less than 1 micron became possible by applying small values of the current amplitudes. The experiment was carried out in which a plastic cylinder with the inner diameter c.a. 8 mm was attached to the tap of the glass pipe. The teflon piston was installed inside the cylinder, with the ability of free movement inside this cylinder. When a series of current pulses were supplied to the electric circuit from a signals generator, the piston made fast reciprocating motions, which could be easily watched visually. The results of the performed investigations suggest the possibility of widespread use of the effect of the fast pressure change of air environment near the conductor upon current alteration for solving scientific and technical problems. It is possible to create new devices, among others for nanotechnologies, which have great advantages in comparison with existing ones. One can obviously predict application for the creation of micro- and nano-instruments what has a great importance up to date. The simplicity of making such instruments lets us consider that the effect of one-to-one match of the pressure change to the electric current alterations in the working camera is prospective.


2021 ◽  
Author(s):  
Lucas Pelascini ◽  
Philippe Steer ◽  
Laurent Longuevergne

<p>Landslides are one of the sources of natural hazards that cause damages and losses but also shapes the landscape. A better understanding the factors triggering or pre-conditioning landslide occurrence is therefore critical for risk assessment, with implications for hillslope erosion and landscape dynamics Triggering of catastrophic landslides is generally associated with events such as earthquakes or intense rainfalls. In Taiwan, a minimum of 22,705 landslides were reported during the typhoon Morakot in 2009 (Lin et al., 2011). Landslides triggered during storms are generally associated to the intensity and cumulated amount of rainfall, as water infiltration destabilize slopes (Iverson, 2000). However, a correlation has also been reported between slope stability and the change in atmospheric pressure (Schulz, 2009). Indeed, a change in air-pressure can lead in a readjustment in pore pressure, and cause fluid movements normal to the surface. The aim of this study is to characterize the effect of atmospheric pressure changes and define its specific contribution on slope stability when combined with rainfall</p><p>A 2-dimensional analytical model has been developed based on diffusion equations to describe the destabilization induced by water infiltration and atmospheric pressure changes induced by typhoons. As both mechanisms are function of pore pressure, and especially groundwater pore pressure, the water table within a finite-length hillslope is modelled using Townley’s (1995) analytical expression of water flow in a unconfined aquifer. The hillslope itself is a simple tilted half-space with a water divide at the top and a river at the toe forcing the water table to the surface. Slope stability is inferred through a safety factor computed using the coulomb criterion. Both rainfall infiltration and air pressure modify pore pressure through a diffusion process. While rainfall increases water table height and induce large increases in pore pressure within days or hours, , we show that atmospheric-induced pore pressure change is instantaneous and can occur even if the hillslope is fully saturated.</p><p>The model allows to separate the hillslope response into two regimes, upslope or downslope, where the destabilization is mainly linked to rainfall or to atmospheric pressure change, respectively.  Our results suggest that landslide occurring during storms in the downstream part of the hillslope are likely candidate for being triggered by atmospheric pressure change, in particular if the storm occurs with a humid initial condition. We show that the effect of atmospheric pressure changes is not negligible. On contrary, it is crucial to define the amplitude, timing and geometry of the hillslope instability, especially when combined to rainfall.</p>


2000 ◽  
Vol 39 (02) ◽  
pp. 200-203
Author(s):  
H. Mizuta ◽  
K. Yana

Abstract:This paper proposes a method for decomposing heart rate fluctuations into background, respiratory and blood pressure oriented fluctuations. A signal cancellation scheme using the adaptive RLS algorithm has been introduced for canceling respiration and blood pressure oriented changes in the heart rate fluctuations. The computer simulation confirmed the validity of the proposed method. Then, heart rate fluctuations, instantaneous lung volume and blood pressure changes are simultaneously recorded from eight normal subjects aged 20-24 years. It was shown that after signal decomposition, the power spectrum of the heart rate showed a consistent monotonic 1/fa type pattern. The proposed method enables a clear interpretation of heart rate spectrum removing uncertain large individual variations due to the respiration and blood pressure change.


2021 ◽  
Vol 10 (7) ◽  
pp. 437
Author(s):  
Hongxia Qi ◽  
Yunjia Wang ◽  
Jingxue Bi ◽  
Hongji Cao ◽  
Shenglei Xu

Floor positioning is an important aspect of indoor positioning technology, which is closely related to location-based services (LBSs). Currently, floor positioning technologies are mainly based on radio signals and barometric pressure. The former are impacted by the multipath effect, rely on infrastructure support, and are limited by different spatial structures. For the latter, the air pressure changes with the temperature and humidity, the deployment cost of the reference station is high, and different terminal models need to be calibrated in advance. In view of these issues, here, we propose a novel floor positioning method based on human activity recognition (HAR), using smartphone built-in sensor data to classify pedestrian activities. We obtain the degree of the floor change according to the activity category of every step and determine whether the pedestrian completes floor switching through condition and threshold analysis. Then, we combine the previous floor or the high-precision initial floor with the floor change degree to calculate the pedestrians’ real-time floor position. A multi-floor office building was chosen as the experimental site and verified through the process of alternating multiple types of activities. The results show that the pedestrian floor position change recognition and location accuracy of this method were as high as 100%, and that this method has good robustness and high universality. It is more stable than methods based on wireless signals. Compared with one existing HAR-based method and air pressure, the method in this paper allows pedestrians to undertake long-term static or round-trip activities during the process of going up and down the stairs. In addition, the proposed method has good fault tolerance for the misjudgment of pedestrian actions.


1988 ◽  
Vol 97 (2) ◽  
pp. 199-206 ◽  
Author(s):  
Yehuda Finkelstein ◽  
Yuval Zohar ◽  
Yoav P. Talmi ◽  
Nelu Laurian

The Toynbee maneuver, swallowing when the nose is obstructed, leads in most cases to pressure changes in one or both middle ears, resulting in a sensation of fullness. Since first described, many varying and contradictory comments have been reported in the literature concerning the type and amount of pressure changes both in the nasopharynx and in the middle ear. In our study, the pressure changes were determined by catheters placed into the nasopharynx and repeated tympanometric measurements. New information concerning the rapid pressure variations in the nasopharynx and middle ear during deglutition with an obstructed nose was obtained. Typical individual nasopharyngeal pressure change patterns were recorded, ranging from a maximal positive pressure of + 450 to a negative pressure as low as −320 mm H2O.


Heart ◽  
2021 ◽  
pp. heartjnl-2021-319110
Author(s):  
Dae Hyun Lee ◽  
Fahad Hawk ◽  
Kieun Seok ◽  
Matthew Gliksman ◽  
Josephine Emole ◽  
...  

BackgroundIbrutinib is a tyrosine kinase inhibitor most commonly associated with atrial fibrillation. However, additional cardiotoxicities have been identified, including accelerated hypertension. The incidence and risk factors of new or worsening hypertension following ibrutinib treatment are not as well known.MethodsWe conducted a retrospective study of 144 patients diagnosed with B cell malignancies treated with ibrutinib (n=93) versus conventional chemoimmunotherapy (n=51) and evaluated their effects on blood pressure at 1, 2, 3 and 6 months after treatment initiation. Descriptive statistics were used to compare baseline characteristics for each treatment group. Fisher’s exact test was used to identify covariates significantly associated with the development of hypertension. Repeated measures analyses were conducted to analyse longitudinal blood pressure changes.ResultsBoth treatments had similar prevalence of baseline hypertension at 63.4% and 66.7%, respectively. There were no differences between treatments by age, sex and baseline cardiac comorbidities. Both systolic and diastolic blood pressure significantly increased over time with ibrutinib compared with baseline, whereas conventional chemoimmunotherapy was not associated with significant changes in blood pressure. Baseline hypertensive status did not affect the degree of blood pressure change over time. A significant increase in systolic blood pressure (defined as more than 10 mm Hg) was noted for ibrutinib (36.6%) compared with conventional chemoimmunotherapy (7.9%) at 1 month after treatment initiation. Despite being hypertensive at follow-up, 61.2% of patients who were treated with ibrutinib did not receive adequate blood pressure management (increase or addition of blood pressure medications). Within the ibrutinib group, of patients who developed more than 20 mm Hg increase in systolic blood pressure, only 52.9% had hypertension management changes.ConclusionsIbrutinib is associated with the development of hypertension and worsening of blood pressure. Cardiologists and oncologists must be aware of this cardiotoxicity to allow timely management of blood pressure elevations.


2021 ◽  
Author(s):  
Nima Safaei ◽  
Omar Smadi ◽  
Babak Safaei ◽  
Arezoo Masoud

<p>Cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the development of robust automated distress evaluation systems that comprise a low-cost crack detection method for performing fast and cost-effective roadway health monitoring practices. Most of the current methods are costly and have labor-intensive learning processes, so they are not suitable for small local-level projects with limited resources or are only usable for specific pavement types.</p> <p>This paper proposes a new method that uses an improved version of the weighted neighborhood pixels segmentation algorithm to detect cracks in 2-D pavement images. This method uses the Gaussian cumulative density function as the adaptive threshold to overcome the drawback of fixed thresholds in noisy environments. The proposed algorithm was tested on 300 images containing a wide range of noise representative of different noise conditions. This method proved to be time and cost-efficient as it took less than 3.15 seconds per 320 × 480 pixels image for a Xeon (R) 3.70 GHz CPU processor to determine the detection results. This makes the model a perfect choice for county-level pavement maintenance projects requiring cost-effective pavement crack detection systems. The validation results were promising for the detection of low to severe-level cracks (Accuracy = 97.3%, Precision = 79.21%, Recall= 89.18% and F<sub>1</sub> score = 83.9%).</p>


Author(s):  
K. Nagarajan ◽  
S. Ramya ◽  
T. Thangamani ◽  
A. Selvaperumal ◽  
T. Arthi

The parameters require for maintaining the crop's health and the integrity of the irrigation system has a relation with quality of irrigation water. In Micro irrigation appropriate filtration is very much important to prevent clogging. Filtration unit is one of the main components in micro irrigation system that too, Primary filter is more important to be installed along with the unit, when the water source is from open reservoir and other water sources. Though it is essential, the primary filter is not being installed by the farmers due to its high cost. Hence this study is an attempt to fabricate low-cost filter and to evaluate its performance with different filter media layer. A low-cost primary filter for drip irrigation system is fabricated. Different filter media layer like silex sand (fine silex, coarse silex), pebbles with different sizes are selected. The results revealed that the removal efficiency of filter using silex sand and pebbles were 71% in terms of turbidity, 78% in terms of total suspended solids removal at flow rate of 12 m3 /hr. This fabricated low-cost filter will be cost effective for small farm applications.


2018 ◽  
Vol 44 (6) ◽  
pp. 722-738 ◽  
Author(s):  
Calvin W.H. Cheong

Purpose The purpose of this paper is to investigate the ability of the Islamic gold dinar to hedge against two well-established foreign exchange (FX) risk factors namely, the dollar risk factor and global FX volatility innovations. Design/methodology/approach The paper uses a combination of the Markowitz (1952) portfolio optimization, visual data representations and the classic Fama-Macbeth (1973) two-pass procedure regressions. Findings The findings show that the Islamic gold dinar can serve as a hedge against market volatility, outperforms a diversified currency portfolio, and through its inclusions into the diversified currency portfolio, improve said portfolio’s ability to hedge against market volatility. Research limitations/implications Due to the spread of the sample, country-specific factors could not be taken into account. Practical implications The Islamic gold dinar is a cost-efficient, cost-effective, and Shariah-compliant instrument that provides a solid hedge for investors and/or firms that have financial positions denominated in foreign currencies. Should these investors or firms find it costly to maintain a dinar-only portfolio, including the dinar into their currency portfolios also provides the same benefit, albeit at a lower magnitude. Originality/value This study is timely as the Accounting and Auditing Organization for Islamic Financial Institutions has recently for the first time recognized gold as a Shariah-compliant investment. The findings of this study provide the first look as to how investors and firms can benefit through the use of the Islamic gold dinar in their risk management practices.


Sign in / Sign up

Export Citation Format

Share Document