scholarly journals Polarization-Dependent Optical Properties and Optoelectronic Devices of 2D Materials

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-35
Author(s):  
Ziwei Li ◽  
Boyi Xu ◽  
Delang Liang ◽  
Anlian Pan

The development of optoelectronic devices requires breakthroughs in new material systems and novel device mechanisms, and the demand recently changes from the detection of signal intensity and responsivity to the exploration of sensitivity of polarized state information. Two-dimensional (2D) materials are a rich family exhibiting diverse physical and electronic properties for polarization device applications, including anisotropic materials, valleytronic materials, and other hybrid heterostructures. In this review, we first review the polarized-light-dependent physical mechanism in 2D materials, then present detailed descriptions in optical and optoelectronic properties, involving Raman shift, optical absorption, and light emission and functional optoelectronic devices. Finally, a comment is made on future developments and challenges. The plethora of 2D materials and their heterostructures offers the promise of polarization-dependent scientific discovery and optoelectronic device application.

2021 ◽  
Author(s):  
Muhammad Aamir Iqbal ◽  
Maria Malik ◽  
Wajeehah Shahid ◽  
Waqas Ahmad ◽  
Kossi A. A. Min-Dianey ◽  
...  

Plasmonics is a technologically advanced term in condensed matter physics that describes surface plasmon resonance where surface plasmons are collective electron oscillations confined at the dielectric-metal interface and these collective excitations exhibit profound plasmonic properties in conjunction with light interaction. Surface plasmons are based on nanomaterials and their structures; therefore, semiconductors, metals, and two-dimensional (2D) nanomaterials exhibit distinct plasmonic effects due to unique confinements. Recent technical breakthroughs in characterization and material manufacturing of two-dimensional ultra-thin materials have piqued the interest of the materials industry because of their extraordinary plasmonic enhanced characteristics. The 2D plasmonic materials have great potential for photonic and optoelectronic device applications owing to their ultra-thin and strong light-emission characteristics, such as; photovoltaics, transparent electrodes, and photodetectors. Also, the light-driven reactions of 2D plasmonic materials are environmentally benign and climate-friendly for future energy generations which makes them extremely appealing for energy applications. This chapter is aimed to cover recent advances in plasmonic 2D materials (graphene, graphene oxides, hexagonal boron nitride, pnictogens, MXenes, metal oxides, and non-metals) as well as their potential for applied applications, and is divided into several sections to elaborate recent theoretical and experimental developments along with potential in photonics and energy storage industries.


2008 ◽  
Vol 590 ◽  
pp. 211-232 ◽  
Author(s):  
Hisashi Masui ◽  
Shuji Nakamura

Nitride-based optoelectronic devices prepared in the c orientation have been successfully introduced to the global marketplace and are changing the way we think about lighting. A part of the research interest has shifted toward nonpolar and semipolar orientations, which has the potential to broaden the scope and impact of this technology. This is because quantum-well structures prepared in nonpolar and semipolar orientations are able to suppress the quantum-confinement Stark effect, which has a negative impact on optoelectronic device performance. The lower crystal symmetry of such orientations provides spontaneously polarized light emission. Despite these attractive properties of nonpolar and semipolar orientations, the corresponding materials growth is not trivial. The present chapter discusses our efforts on growth of III-nitride materials in nonpolar and semipolar orientations and the related material properties.


2019 ◽  
Vol 28 (01n02) ◽  
pp. 1940012
Author(s):  
Zane Jamal-Eddine ◽  
Yuewei Zhang ◽  
Siddharth Rajan

Tunnel junctions have garnered much interest from the III-Nitride optoelectronic research community within recent years. Tunnel junctions have seen applications in several material systems with relatively narrow bandgaps as compared to the III-Nitrides. Although they were initially dismissed as ineffective for commercial device applications due to high voltage penalty and on resistance owed to the wide bandgap nature of the III-Nitride material systems, recent development in the field has warranted further study of such tunnel junction enabled devices. They are of particular interest for applications in III-Nitride optoelectronic devices in which they can be used to enable novel device designs which could potentially address some of the most challenging physical obstacles presented with this unique material system. In this work we review the recent progress made on the study of III-Nitride tunnel junction-based optoelectronic devices and the challenges which are still faced in the field of study today.


1999 ◽  
Vol 558 ◽  
Author(s):  
Jasleen Bombra Sobti ◽  
V. Bhatia ◽  
P. M. Babuchna ◽  
Mark H. Weichold

ABSTRACTNeed for efficient blue light emitting source for optoelectronic device applications such as flat panel displays has made the research in luminescent material ever so important. Tungsten doped zinc oxide (ZnO:W) has been identified as a blue light emitting phosphor exhibiting cathodoluminescence near 490 nm. This paper details work done on ZnO:W phosphor preparation conditions for efficient light emission from the phosphor. Material characterization to identify the possible source of blue light emission will also be discussed.


2002 ◽  
Vol 736 ◽  
Author(s):  
Michael G. Mauk ◽  
Bryan W. Feyock ◽  
Jeremy R. Balliet ◽  
Todd R. Ruffins

ABSTRACTSemiconductor p-n junctions formed in a cylindrical geometry as concentric cladding layers surrounding a wire or fiber ‘substrate’ could have significant advantages for optoelectronic devices such as LEDs and solar cells, especially with regard to optical coupling efficiency and high-throughput manufacturing. Fiber-based semiconductor device components may also prove useful in conformable electronics or electrotextiles, and for giant -area flexible circuits. We describe techniques and results for chemical vapor deposition and melt coating to form 2- to 50-micron thick cladding layers of silicon or germanium on various types of fibers and refractory metals. These Ge or Si cladding layers can be recrystallized to achieve large (several millimeters or greater) grains oriented along the axis of the fiber. Additional GaAs cladding layers are grown on the recrystallized Ge or Si by vapor-phase epitaxy or metallic solution growth. p-n junctions are formed by diffusion or epitaxy. Light-sensitive diodes have been fabricated in these structures.


MRS Advances ◽  
2016 ◽  
Vol 1 (28) ◽  
pp. 2065-2069
Author(s):  
Anahita Haghizadeh ◽  
Haeyeon Yang

ABSTRACTFor optoelectronic device applications, quantum wires can be used as active media due to their unique physical properties. However, conventional approaches such as the self-assembly via the Stranski-Krastanov (S-K) growth technique have a limited success in their applications toward optoelectronic devices including photovoltaics and solar cells. A novel fabrication mechanism for quality quantum wires has been discovered. The laser fabricated nanowires semiconductor surfaces can have width and height as small as 30 and 5 nm, respectively while the density is one per 200 nm.


1999 ◽  
Vol 560 ◽  
Author(s):  
Jasleen Bombra Sobti ◽  
V. Bhatia ◽  
P. M. Babuchna ◽  
Mark H. Weichold

ABSTRACTNeed for efficient blue light emitting source for optoelectronic device applications such as flat panel displays has made the research in luminescent material ever so important. Tungsten doped zinc oxide (ZnO:W) has been identified as a blue light emitting phosphor exhibiting cathodoluminescence near 490 tim. This paper details work done on ZnO:W phosphor preparation conditions for efficient light emission from the phosphor. Material characterization to identify the possible source of blue light emission will also be discussed.


2016 ◽  
Vol 4 (38) ◽  
pp. 8859-8878 ◽  
Author(s):  
Zhibin Yang ◽  
Jianhua Hao

Recent advances of preparing two-dimensional (2D) materials by pulsed laser deposition (PLD) are presented, including deposition processes, structure and characterization. The performance of proof-of-concept electronic or optoelectronic devices based on PLD grown 2D materials is introduced.


Author(s):  
Joanna L. Batstone

Interest in II-VI semiconductors centres around optoelectronic device applications. The wide band gap II-VI semiconductors such as ZnS, ZnSe and ZnTe have been used in lasers and electroluminescent displays yielding room temperature blue luminescence. The narrow gap II-VI semiconductors such as CdTe and HgxCd1-x Te are currently used for infrared detectors, where the band gap can be varied continuously by changing the alloy composition x.Two major sources of precipitation can be identified in II-VI materials; (i) dopant introduction leading to local variations in concentration and subsequent precipitation and (ii) Te precipitation in ZnTe, CdTe and HgCdTe due to native point defects which arise from problems associated with stoichiometry control during crystal growth. Precipitation is observed in both bulk crystal growth and epitaxial growth and is frequently associated with segregation and precipitation at dislocations and grain boundaries. Precipitation has been observed using transmission electron microscopy (TEM) which is sensitive to local strain fields around inclusions.


Sign in / Sign up

Export Citation Format

Share Document