scholarly journals Phase composition of coatings on the D16 alloy during micro-arc oxdation in alkaline and silicate electrolytes

2020 ◽  
Vol 1,2020 (1,2020 (124)) ◽  
pp. 51-55
Author(s):  
Subbotina V ◽  
Belozerov V ◽  
Sobol’ O

Goal. The influence of electrolysis conditions at different electrolyte compositions on the phase formation of coatings obtained by micro-arc oxidation (MDO) on an aluminum alloy D16 was studied. Method. For electrolysis, two types of electrolytes were used: alkaline electrolyte (solution (KOH) in distilled water), silicate electrolyte (with different percentages of Na2SiO3 component). Research results. It was found that the phase composition of the MAO coatings obtained in an alkaline (KOH) electrolyte mainly consists of γ - Al2O3 phases and, to a much lesser extent, the α-Al2O3 phases. An increase in the KOH concentration leads to a shift in the γ – Al2O3 → α – Al2O3 polymorphic reaction toward the formation of the hardest α-Al2O3 phase (corundum). The formation of the preferred orientation of the growth of crystallites of γ – Al2O3 and α – Al2O3 phases during their formation in an alkaline electrolyte was not detected. Scientific novelty. A significant influence on the mechanism and processes of coating formation is made by the addition of liquid glass (Na2SiO3) in the electrolyte. In this case, the growth rate of the coating increases significantly, but the size of the ordering regions decreases from crystalline to X-ray amorphous. The phase composition of the MAO coatings, when they are formed in a silicate electrolyte, varies from a mixture of the γ - Al2O3 phase and mullite (3Al2O3 • 2SiO2) with a low content of liquid glass (10 g/l Na2SiO3) to the formation of only the X-ray amorphous phase with a high content of liquid glass in the electrolyte (50 g/l Na2SiO3). Practical significance. It was concluded that the use of an alkaline or silicate electrolyte with different percentages allows a wide variation of both the phase composition and structural state (α- Al2O3 and γ- Al2O3 phases, mullite (3Al2O3 • 2SiO2) or X-ray amorphous state) and the kinetics of growth the coating itself.

2012 ◽  
Vol 512-515 ◽  
pp. 1066-1069
Author(s):  
Jin Xue Zhang

Compound ceramic coatings with the main crystal phase of Al2TiO5 (as-coated samples) were prepared in situ on the surface of Ti-6Al-4V alloy by means of pulsed bi-polar micro-arc oxidation (MAO) in an NaAlO2 solution. The coated samples were calcined in argon and air at 1000 oC, respectively. The phase composition, surface and section morphology, and element contents of the ceramic coatings were investigated by X-ray diffractometry (XRD), Scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (XRF). The samples were treated in argon and the as-coated ones were calcined in air at 1000 oC to study the anti-oxidation properties of the samples. The results show that Al2TiO5 had been decomposed in an hour and transformed into α-Al2O3 and rutile TiO2 in air. However, Al2TiO5 had been decomposed in four hours in argon and the final coating surface was completely composed of α-Al2O3. The content of Al2O3 was decreased from outside to inside layers and Ti2O3 was formed in the coating. Furthermore, the morphology of the ceramic coatings after the calcination was different. The coatings calcined in argon were finer; the grains and pores were smaller than those in air.


2012 ◽  
Vol 512-515 ◽  
pp. 1078-1081
Author(s):  
Guo Dong Hao ◽  
Zhi Gang Yang ◽  
Xu Xu Zheng ◽  
Xu Zhao Zeng ◽  
Xu Yan Wu

Abstract. Compound ceramic coatings with the main crystal phase of Al2TiO5 (as-coated samples) were prepared in situ on the surface of Ti-6Al-4V alloy by means of pulsed bi-polar micro-arc oxidation (MAO) in an NaAlO2 solution. The coated samples were calcined in argon and air at 1000 oC, respectively. The phase composition, surface and section morphology, and element contents of the ceramic coatings were investigated by X-ray diffractometry(XRD), Scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (XRF). The samples were treated in argon and the as-coated ones were calcined in air at 1000 oC to study the anti-oxidation properties of the samples. The results show that Al2TiO5 had been decomposed in an hour and transformed into α-Al2O3 and rutile TiO2 in air. However, Al2TiO5 had been decomposed in four hours in argon and the final coating surface was completely composed of α-Al2O3. The content of Al2O3 was decreased from outside to inside layers and Ti2O3 was formed in the coating. Furthermore, the morphology of the ceramic coatings after the calcination was different. The coatings calcined in argon were finer; the grains and pores were smaller than those in air. The high oxidation reaction of the TC4 substrate was the fiercest and the weight gains of the coated samples treated in argon was the lowest. The weight gains of the ceramic coatings were nearly changing in the form of parabola law.


Author(s):  
V. A. Vlasov ◽  
V. V. Shekhovtsov ◽  
O. G. Volokitin ◽  
N. K. Skripnikova ◽  
G. G. Volokitin ◽  
...  

The paper focuses on aluminosilicate-based microspheres, whose shell represents an X-ray amorphous state, which significantly reduces their strength properties. However, a number of technological characteristics used in industry provide the formation of glass-ceramic and crystalline states of the condensed phase, which is the shell microsphere. Presently, the formation of the structure and phase composition during the interaction between aluminosilicates (the SiO2/Al2O3 ratio varies between 0−100 %) and high-temperature (≥ 5000 K) plasma is most interesting. This paper presents the research results of the structure and phase composition of the aluminosilicate-based condensed phase during the microsphere production. The X-ray phase analysis shows that after cooling, the structure and phase composition of the microsphere shells based on refractory polycrystalline materials promotes the formation of the X-ray amorphous structure at SiO2 ≥ 60 wt. % in the initial powder and the transition of γ-Al2O3 cryptocrystalline phase to high-temperature α- Al2O3 phase with the use of the initial alumina powder.


2019 ◽  
Vol 484 (1) ◽  
pp. 41-43
Author(s):  
E. A. Malinina ◽  
V. K. Skachkova ◽  
I. V. Kozerozhets ◽  
V. V. Avdeeva ◽  
L. V. Goeva ◽  
...  

The method of nanoscaled sodium dodecahydro-closo-dodecaborate Na2[B12H12] synthesis is presented. The composite is heated to 200°C to yield the desired product, forming with the introduction of triethyl- ammonium salt [Et3NH]2[B12H12] into the silicate matrix of a sodium liquid glass. The morphology and phase composition of the synthesized sample are studied through SEM and X-ray diffraction methods, in comparison to those of a standard salt sample Na2[B12H12]. Based on the obtained data, the sample under study is an amorphous composite, on the surface of which nanoscale crystals of Na2[B12H12] form.


2012 ◽  
Vol 19 (04) ◽  
pp. 1250038 ◽  
Author(s):  
H. X. LI ◽  
H. H. ZHU ◽  
X. WU ◽  
Z. G. JI

Ceramic coatings have been synthesized on 6063 aluminum alloy by micro-arc oxidation (MAO) technique in the solution of Na2B4O7 electrolyte with and without α- Al2O3 nanoadditive. Effects of α- Al2O3 nanoadditive on the phase composition, micro-structure, micro-hardness, adhesion and wear resistance of the prepared ceramic coatings have been investigated in this paper. The phase composition and microstructure of the MAO coatings were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDX) analyses, respectively. Micro-hardness, adhesion and tribological and wear tests were also performed. The results showed that the α- Al2O3 nanoadditive doped in the electrolyte had great influence on the structural and mechanical properties of the ceramic coatings.


2007 ◽  
Vol 353-358 ◽  
pp. 1733-1736 ◽  
Author(s):  
Fei Chen ◽  
Hai Zhou ◽  
Chen Chen ◽  
Fan Xiu Lu ◽  
Fan Xiu Lu

Oxidation ceramic coating was directly synthesized on LY12 aluminium alloy by micro-arc oxidation (MAO) process in Na2SiO3 electrolyte solution with the Na2WO4-KOH-Na2EDTA addition. The corrosion resistance of the coating was tested using CS300P electrochemical corrosion workshop in 3.5% NaCl solution. Using the scanning electron microscopy (SEM) and X-ray diffraction (XRD), the cross-section microstructure, the surface morphology and the phase structure of the micro-arc oxidation ceramic coating were analyzed. The results showed that the corrosion resistance of the micro-arc oxidation ceramic coating in 3.5% NaCl solution was enhanced remarkably, the corrosion velocity was obviously slowed down. The thickness of micro-arc oxidation ceramic coating was about 11μm. The final phases in the coating were found to be α-Al2O3 and γ-Al2O3. The mechanism of the oxidation ceramic coating formation was investigated too.


2014 ◽  
Vol 687-691 ◽  
pp. 4210-4213
Author(s):  
Hai Tao Bu ◽  
Zhao Hua Jiang ◽  
Zhong Ping Yao

A ceramic coating grows on the surface of Q235 carton steel in situ by the micro-arc oxidation method and the silicate electrolyte system; and the phase composition, surface topography and elementary composition of the ceramic coating are analyzed by X-ray diffractometer (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (EDS). The results show that the ceramic coating growing on the surface of Q235 carton steel in situ presents an irregular porous structure; and the electrolyte and the element in the basal body exist in the ceramic coating in the form of amorphous state. And then, the author degrades the rhodamine B solution by the home-made ceramic coating and H2O2Fenton system, so that the degradation rate of the rhodamine B solution can reach 97%; and meanwhile, the degradation rate is not reduced along the increased using times.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012057
Author(s):  
E A Kazantseva ◽  
E G Komarova

Abstract The effect of the magnitude of the US (ultrasound) power applied during the MAO (micro arc oxidation) process on the morphology, elemental and phase composition of the CaP coatings was studied. The US at different power (50-200 W) applying during the MAO process led to the local destruction of the structure elements (spheres and pores) and local filling the pore spaces on the coating surface, and to the formation of local macro-pores inside the coatings near the substrate. Such morphological transformations led to the surface and structure heterogeneity of the coatings, increasing of the surface roughness from 3.0 to 4.5 μm and of the thickness from 50 to 60 μm. The US application at different power did not affect significantly the elemental composition of the coatings. At the same time, under applied US with power more than 100 W, the state of the coatings transformed from X-ray amorphous to the quasiamorphous with the small incorporation of crystalline phases of CaHPO4 and β-Ca2P2O7.


2010 ◽  
Vol 97-101 ◽  
pp. 1554-1557
Author(s):  
Guo Dong Hao ◽  
Nai Wu Zhang ◽  
Tao Yun ◽  
Jin Wang ◽  
Bo Lian ◽  
...  

Compound ceramic coatings with the main crystalline of Al2TiO5 (as-coated samples) were prepared in situ on the surface Ti-6Al-4V alloy by means of pulsed bi-polar micro-arc oxidation (MAO) in a NaAlO2 solution. The coated samples were calcined in argon and air at 1000 oC, respectively. The phase composition, surface morphology of the ceramic coatings were investigated by XRD, SEM and XRF. The samples were treated in argon and the as-coated ones were calcined in air at 1000 oC to study the anti-oxidation properties of the samples. The results show that Al2TiO5 was decomposed very soon and transformed into α-Al2O3 and rutile TiO2 in air. However, Al2TiO5 was decomposed very slowly in argon and the final coating surface was completely α-Al2O3. Also, the morphology of the ceramic coatings after the calcination was different. The coatings calcined in argon were fined; grains and pores were smaller than those in air. High temperature oxidation occurred very strongly in the TC4 substrate, the weight gains of the as-coated ceramic coatings and the treated ones in argon were nearly changing in the form of parabola, and the weight gains of the coated samples treated in argon were comparatively lower than those of the as-coated samples.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 779
Author(s):  
Marina Kovaleva ◽  
Igor Goncharov ◽  
Vseslav Novikov ◽  
Maxim Yapryntsev ◽  
Olga Vagina ◽  
...  

Composite ZrB2–MoSi2 coating modified by Y2O3 and Al was prepared by a new multi-chamber detonation accelerator (MCDS) on carbon/carbon composites. Postdeposition heat treatment of the samples at 1500 °C for 1 and 6 h was carried out in air. The effect of heat treatment on the microstructure and phase composition of the ZrB2–MoSi2 coating was investigated by scanning electron microscopy and X-ray diffraction phase analysis. The as-sprayed coating presented as a dense lamellar structure, composed of m-ZrO2, t-ZrO2, some hexagonal ZrB2, and cubic Al phases. The m-ZrO2, c-ZrO2, and h-(α-Al2O3) formed at 1500 °C. The coatings after heat treatment (1 and 6 h) exhibited a structure without cracks. The porosity (~1%) of the coating did not change after heat treatment. Thin, continuous, silica-rich film covered the surfaces of ZrO2 and Al2O3 particles, and could have played a role during heat treatment by acting as a grain lubricant for particle rearrangement.


Sign in / Sign up

Export Citation Format

Share Document