El Niño and climate change triggered Zika outbreak, new research suggests

2019 ◽  
Author(s):  
Editage Insights
Keyword(s):  
El Niño ◽  
El Nino ◽  
2012 ◽  
Vol 1 (1) ◽  
Author(s):  
Johnny Chavarría Viteri ◽  
Dennis Tomalá Solano

La variabilidad climática es la norma que ha modulado la vida en el planeta. Este trabajo demuestra que las pesquerías y acuicultura costera ecuatorianas no son la excepción, puesto que tales actividades están fuertemente influenciadas por la variabilidad ENSO (El Niño-Oscilación del Sur) y PDO (Oscilación Decadal del Pacífico), planteándose que la señal del cambio climático debe contribuir a esta influencia. Se destaca también que, en el análisis de los efectos de la variabilidad climática sobre los recursos pesqueros, el esfuerzo extractivo también debe ser considerado. Por su parte, la acción actual de la PDO está afectando la señal del cambio climático, encontrándose actualmente en fases opuestas. Se espera que estas señales entren en fase a finales de esta década, y principalmente durante la década de los 20 y consecuentemente se evidencien con mayor fuerza los efectos del Cambio Climático. Palabras Clave: Variabilidad Climática, Cambio Climático, ENSO, PDO, Pesquerías, Ecuador. ABSTRACT Climate variability is the standard that has modulated life in the planet. This work shows that the Ecuadorian  fisheries and aquaculture are not the exception, since such activities are strongly influenced by ENSO variability (El Niño - Southern Oscillation) and PDO (Pacific Decadal Oscillation), considering that the signal of climate change should contribute to this influence. It also emphasizes that in the analysis of the effects of climate variability on the fishing resources, the extractive effort must also be considered. For its part, the current action of the PDO is affecting the signal of climate change, now found on opposite phases. It is hoped that these signals come into phase at the end of this decade, and especially during the decade of the 20’s and more strongly evidencing the effects of climate change. Keywords: Climate variability, climate change, ENSO (El Niño - Southern Oscillation) and PDO  (Pacific Decadal Oscillation); fisheries, Ecuador. Recibido: mayo, 2012Aprobado: agosto, 2012


2021 ◽  
Vol 9 (4) ◽  
pp. 377
Author(s):  
Dong Eun Lee ◽  
Jaehee Kim ◽  
Yujin Heo ◽  
Hyunjin Kang ◽  
Eun Young Lee

The impact of climatic variability in atmospheric conditions on coastal environments accompanies adjustments in both the frequency and intensity of coastal storm surge events. The top winter season daily maximum sea level height events at 20 tidal stations around South Korea were examined to assess such impact of winter extratropical cyclone variability. As the investigation focusses on the most extreme sea level events, the impact of climate change is found to be invisible. It is revealed that the measures of extreme sea level events—frequency and intensity—do not correlate with the local sea surface temperature anomalies. Meanwhile, the frequency of winter extreme events exhibits a clear association with the concurrent climatic indices. It was determined that the annual frequency of the all-time top 5% winter daily maximum sea level events significantly and positively correlates with the NINO3.4 and Pacific Decadal Oscillation (PDO) indices at the majority of the 20 tidal stations. Hence, this indicates an increase in extreme event frequency and intensity, despite localized temperature cooling. This contradicts the expectation of increases in local extreme sea level events due to thermal expansion and global climate change. During El Nino, it is suggested that northward shifts of winter storm tracks associated with El Nino occur, disturbing the sea level around Korea more often. The current dominance of interannual storm track shifts, due to climate variability, over the impact of slow rise on the winter extreme sea level events, implies that coastal extreme sea level events will change through changes in the mechanical drivers rather than thermal expansion. The major storm tracks are predicted to continue shifting northward. The winter extreme sea level events in the midlatitude coastal region might not go through a monotonic change. They are expected to occur more often and more intensively in the near future, but might not continue doing so when northward shifting storm tracks move away from the marginal seas around Korea, as is predicted by the end of the century.


2009 ◽  
Vol 39 (4) ◽  
pp. 1003-1011 ◽  
Author(s):  
Philip Martin Fearnside

Global warming has potentially catastrophic impacts in Amazonia, while at the same time maintenance of the Amazon forest offers one of the most valuable and cost-effective options for mitigating climate change. We know that the El Niño phenomenon, caused by temperature oscillations of surface water in the Pacific, has serious impacts in Amazonia, causing droughts and forest fires (as in 1997-1998). Temperature oscillations in the Atlantic also provoke severe droughts (as in 2005). We also know that Amazonian trees die both from fires and from water stress under hot, dry conditions. In addition, water recycled through the forest provides rainfall that maintains climatic conditions appropriate for tropical forest, especially in the dry season. What we need to know quickly, through intensified research, includes progress in representing El Niño and the Atlantic oscillations in climatic models, representation of biotic feedbacks in models used for decision-making about global warming, and narrowing the range of estimating climate sensitivity to reduce uncertainty about the probability of very severe impacts. Items that need to be negotiated include the definition of "dangerous" climate change, with the corresponding maximum levels of greenhouse gases in the atmosphere. Mitigation of global warming must include maintaining the Amazon forest, which has benefits for combating global warming from two separate roles: cutting the flow the emissions of carbon each year from the rapid pace of deforestation, and avoiding emission of the stock of carbon in the remaining forest that can be released by various ways, including climate change itself. Barriers to rewarding forest maintenance include the need for financial rewards for both of these roles. Other needs are for continued reduction of uncertainty regarding emissions and deforestation processes, as well as agreement on the basis of carbon accounting. As one of the countries most subject to impacts of climate change, Brazil must assume the leadership in fighting global warming.


2010 ◽  
Vol 6 (4) ◽  
pp. 525-530 ◽  
Author(s):  
A. A. Tsonis ◽  
K. L. Swanson ◽  
G. Sugihara ◽  
P. A. Tsonis

Abstract. Climate change has been implicated in the success and downfall of several ancient civilizations. Here we present a synthesis of historical, climatic, and geological evidence that supports the hypothesis that climate change may have been responsible for the slow demise of Minoan civilization. Using proxy ENSO and precipitation reconstruction data in the period 1650–1980 we present empirical and quantitative evidence that El Nino causes drier conditions in the area of Crete. This result is supported by modern data analysis as well as by model simulations. Though not very strong, the ENSO-Mediterranean drying signal appears to be robust, and its overall effect was accentuated by a series of unusually strong and long-lasting El Nino events during the time of the Minoan decline. Indeed, a change in the dynamics of the El Nino/Southern Oscillation (ENSO) system occurred around 3000 BC, which culminated in a series of strong and frequent El Nino events starting at about 1450 BC and lasting for several centuries. This stressful climatic trend, associated with the gradual demise of the Minoans, is argued to be an important force acting in the downfall of this classic and long-lived civilization.


Author(s):  
Cynthia Rosenzweig ◽  
Daniel Hillel

The climate system envelops our planet, with swirling fluxes of mass, momentum, and energy through air, water, and land. Its processes are partly regular and partly chaotic. The regularity of diurnal and seasonal fluctuations in these processes is well understood. Recently, there has been significant progress in understanding some of the mechanisms that induce deviations from that regularity in many parts of the globe. These mechanisms include a set of combined oceanic–atmospheric phenomena with quasi-regular manifestations. The largest of these is centered in the Pacific Ocean and is known as the El Niño–Southern Oscillation. The term “oscillation” refers to a shifting pattern of atmospheric pressure gradients that has distinct manifestations in its alternating phases. In the Arctic and North Atlantic regions, the occurrence of somewhat analogous but less regular interactions known as the Arctic Oscillation and its offshoot, the North Atlantic Oscillation, are also being studied. These and other major oscillations influence climate patterns in many parts of the globe. Examples of other large-scale interactive ocean–atmosphere– land processes are the Pacific Decadal Oscillation, the Madden-Julian Oscillation, the Pacific/North American pattern, the Tropical Atlantic Variability, the West Pacific pattern, the Quasi-Biennial Oscillation, and the Indian Ocean Dipole. In this chapter we review the earth’s climate system in general, define climate variability, and describe the processes related to ENSO and the other major systems and their interactions. We then consider the possible connections of the major climate variability systems to anthropogenic global climate change. The climate system consists of a series of fluxes and transformations of energy (radiation, sensible and latent heat, and momentum), as well as transports and changes in the state of matter (air, water, solid matter, and biota) as conveyed and influenced by the atmosphere, the ocean, and the land masses. Acting like a giant engine, this dynamic system is driven by the infusion, transformation, and redistribution of energy.


2018 ◽  
Vol 15 (21) ◽  
pp. 6371-6386 ◽  
Author(s):  
Hinrich Schaefer ◽  
Dan Smale ◽  
Sylvia E. Nichol ◽  
Tony M. Bromley ◽  
Gordon W. Brailsford ◽  
...  

Abstract. The El Niño–Southern Oscillation (ENSO) has been suggested as a strong forcing in the methane cycle and as a driver of recent trends in global atmospheric methane mole fractions [CH4]. Such a sensitivity of the global CH4 budget to climate events would have important repercussions for climate change mitigation strategies and the accuracy of projections for future greenhouse forcing. Here, we test the impact of ENSO on atmospheric CH4 in a correlation analysis. We use local and global records of [CH4], as well as stable carbon isotopic records of atmospheric CH4 (δ13CH4), which are particularly sensitive to the combined ENSO effects on CH4 production from wetlands and biomass burning. We use a variety of nominal, smoothed, and detrended time series including growth rate records. We find that at most 36 % of the variability in [CH4] and δ13CH4 is attributable to ENSO, but only for detrended records in the southern tropics. Trend-bearing records from the southern tropics, as well as all studied hemispheric and global records, show a minor impact of ENSO, i.e. < 24 % of variability explained. Additional analyses using hydrogen cyanide (HCN) records show a detectable ENSO influence on biomass burning (up to 51 %–55 %), suggesting that it is wetland CH4 production that responds less to ENSO than previously suggested. Dynamics of the removal by hydroxyl likely counteract the variation in emissions, but the expected isotope signal is not evident. It is possible that other processes obscure the ENSO signal, which itself indicates a minor influence of the latter on global CH4 emissions. Trends like the recent rise in atmospheric [CH4] can therefore not be attributed to ENSO. This leaves anthropogenic methane sources as the likely driver, which must be mitigated to reduce anthropogenic climate change.


2004 ◽  
Vol 24 (1) ◽  
pp. 89-104 ◽  
Author(s):  
Matthew Collins ◽  
Keyword(s):  
El Niño ◽  
El Nino ◽  
La Niña ◽  

Sign in / Sign up

Export Citation Format

Share Document