scholarly journals Greenland from Archaean to Quaternary. Descriptive text to the 1995 Geological map of Greenland, 1:2 500 000. 2nd edition

2009 ◽  
Vol 18 ◽  
pp. 1-126 ◽  
Author(s):  
Niels Henriksen ◽  
A.K. Higgins ◽  
Feiko Kalsbeek ◽  
T. Christopher R. Pulvertaft

The geological development of Greenland spans a period of nearly 4 Ga, from Eoarchaean to the Quaternary. Greenland is the largest island on Earth with a total area of 2 166 000 km2, but only c. 410 000 km2 are exposed bedrock, the remaining part being covered by a major ice sheet (the Inland Ice) reaching over 3 km in thickness. The adjacent offshore areas underlain by continental crust have an area of c. 825 000 km2. Greenland is dominated by crystalline rocks of the Precambrian shield, which formed during a succession of Archaean and Palaeoproterozoic orogenic events and stabilised as a part of the Laurentian shield about 1600 Ma ago. The shield area can be divided into three distinct types of basement provinces: (1) Archaean rocks (3200–2600 Ma old, with local older units up to> 3800 Ma) that were almost unaffected by Proterozoic or later orogenic activity; (2) Archaean terrains reworked during the Palaeoproterozoic around 1900–1750 Ma ago; and (3) terrains mainly composed of juvenile Palaeoproterozoic rocks (2000–1750 Ma in age). Subsequent geological developments mainly took place along the margins of the shield. During the Proterozoic and throughout the Phanerozoic major sedimentary basins formed, notably in North and North-East Greenland, in which sedimentary successions locally reaching 18 km in thickness were deposited. Palaeozoic orogenic activity affected parts of these successions in the Ellesmerian fold belt of North Greenland and the East Greenland Caledonides; the latter also incorporates reworked Precambrian crystalline basement complexes. Late Palaeozoic and Mesozoic sedimentary basins developed along the continent–ocean margins in North, East and West Greenland and are now preserved both onshore and offshore. Their development was closely related to continental break-up with formation of rift basins. Initial rifting in East Greenland in latest Devonian to earliest Carboniferous time and succeeding phases culminated with the opening of the North Atlantic Ocean in the late Paleocene. Sea-floor spreading was accompanied by extrusion of Palaeogene (early Tertiary) plateau basalts in both central West and central–southern East Greenland. During the Quaternary Greenland was almost completely covered by ice, and the present day Inland Ice is a relic from the Pleistocene ice ages. Vast amounts of glacially eroded detritus were deposited on the continental shelves around Greenland. Mineral exploitation in Greenland has so far encompassed cryolite, lead-zinc, gold, olivine and coal. Current prospecting activities in Greenland are concentrated on gold, base metals, platinum group elements, molybdenum, iron ore, diamonds and lead-zinc. Hydrocarbon potential is confined to the major Phanerozoic sedimentary basins, notably the large basins offshore North-East and West Greenland. While reserves of oil or gas have yet to be found, geophysical data combined with discoveries of oil seeps onshore have revealed a considerable potential for offshore oil and gas.

Author(s):  
Niels Henriksen ◽  
A.K. Higgins ◽  
Feiko Kalsbeek ◽  
T. Christopher R. Pulvertaft

NOTE: This monograph was published in a former series of GEUS Bulletin. Please use the original series name when citing this monograph, for example: Henriksen, N., Higgins, A., Kalsbeek, F., & Pulvertaft, T. C. R. (2000). Greenland from Archaean to Quaternary. Descriptive text to the Geological map of Greenland, 1:2 500 000. Geology of Greenland Survey Bulletin, 185, 2-93. https://doi.org/10.34194/ggub.v185.5197 _______________ The geological development of Greenland spans a period of nearly 4 Ga, from the earliest Archaean to the Quaternary. Greenland is the largest island in the world with a total area of 2 166 000 km2, but only c. 410 000 km2 are exposed bedrock, the remaining part being covered by an inland ice cap reaching over 3 km in thickness. The adjacent offshore areas underlain by continental crust have an area of c. 825 000 km2. Greenland is dominated by crystalline rocks of the Precambrian shield, which formed during a succession of Archaean and early Proterozoic orogenic events and which stabilised as a part of the Laurentian shield about 1600 Ma ago. The shield area can be divided into three distinct types of basement provinces: (1) Archaean rocks (3100-2600 Ma old, with local older units) almost unaffected by Proterozoic or later orogenic activity; (2) Archaean terraines reworked during the early Proterozoic around 1850 Ma ago; and (3) terraines mainly composed of juvenile early Proterozoic rocks (2000-1750 Ma old). Subsequent geological developments mainly took place along the margins of the shield. During the later Proterozoic and throughout the Phanerozoic major sedimentary basins formed, notably in North and North-East Greenland, and in places accumulated sedimentary successions which reached 10-15 km in thickness. Palaeozoic orogenic activity affected parts of these successions in the Ellesmerian fold belt of North Greenland and the East Greenland Caledonides; the latter also incorporates reworked Precambrian crystalline basement complexes. Late Palaeozoic and Mesozoic sedimentary basins developed along the continent-ocean margins in North, East and West Greenland and are now preserved both onshore and offshore. Their development was closely related to continental break-up with formation of rift basins. Initial rifting in East Greenland in latest Devonian to earliest Carboniferous time and succeeding phases culminated with the opening of the North Atlantic in the late Paleocene. Sea-floor spreading was accompanied by extrusion of Tertiary plateau basalts in both central West and central and southern East Greenland. During the Quaternary Greenland was almost completely covered by ice sheets, and the present Inland Ice is a relic of the Pleistocene ice ages. Vast amounts of glacially eroded detritus were deposited on the continental shelves offshore Greenland. Mineral exploitation in Greenland has so far mainly been limited to one cryolite mine, two lead-zinc deposits and one coal deposit. Current prospecting activities in Greenland are concentrated on the gold, diamond and lead-zinc potential. The hydrocarbon potential is confined to the major Phanerozoic sedimentary basins, notably the large basins offshore East and West Greenland. While proven reserves of oil or gas have yet to be found, geophysical data combined with extrapolations from onshore studies have revealed a considerable potential for offshore oil and gas. The description of the map has been prepared with the needs of the professional geologist in mind; it requires a knowledge of geological principles but not previous knowledge of Greenland geology. Throughout the text reference is made to the key numbers in the map legend indicated in square brackets [ ] representing geological units (see Legend explanation, p. 79), while a Place names register (p. 83) and an Index (p. 87) include place names, geological topics, stratigraphic terms and units found in the legend. The extensive reference list is intended as a key to the most relevant information sources.


1969 ◽  
Vol 26 ◽  
pp. 61-64 ◽  
Author(s):  
Michael B.W. Fyhn ◽  
Thorkild M. Rasmussen ◽  
Trine Dahl-Jensen ◽  
Willy L. Weng ◽  
Jørgen A. Bojesen-Koefoed ◽  
...  

The East Greenland margin consists of a number of sedimentary basins, platforms and structural highs (Figs 1, 2). Due to the challenges imposed by the Arctic climate, the region is in an early stage of exploration, and knowledge of the geology and petroleum potential of the margin is limited. However, the significant prospectivity of the conjugated European North Atlantic margin and the nature of the North- East Greenland onshore geology prompt for future offshore exploration. The US Geological Survey thus highlighted the North-East Greenland margin in their latest assessment of the Arctic region (Gautier et al. 2011). With a mean estimate of undiscovered recoverable oil, gas, and natural gas liquids of approximately 31 billion barrels of oil equivalents, the US Geological Survey ranked the North-East Greenland margin fourth in the entire Arctic region, only superseded by known producing petroleum provinces.


1989 ◽  
Vol 145 ◽  
pp. 59-63
Author(s):  
L Thorning ◽  
E Hansen

Two separate geophysical projects were carried out in 1988 as part of glacier-hydrological investigations of the margin of the Inland Ice. We made a reconnaissance electromagnetic resonance survey over the ice margin adjacent to Sermilik and Isortuarssup tasia, south-east of Nuuk/Godthåb and measured ice thickness along some lines in the area of Qamanârssûp serrnia, Kangiata nunâta sermia and Kangaussarssup sermia a short distance to the north, as well as a few profiles over a local ice cap just east of Isortuarssup tasia. In the Pâkitsoq area, north east of Ilulissat/Jakobshavn, we finished the mono-pulse ice radar work started last year (Thorning & Hansen, 1988a).


Polar Record ◽  
1976 ◽  
Vol 18 (112) ◽  
pp. 76-77
Author(s):  
D. W. Matthews

This expedition to the Blosseville Kyst area of east Greenland was wholly geological, comprising several groups brought together under the leadership of Professor P. E. Brown of Aberdeen University. It aimed to follow up geological discoveries which had been made in 1971 by expeditions from Cambridge and Sheffield, and also to pursue several new lines of research directed primarily at relating the sediments and volcanic rocks in east Greenland to the birth of the North Atlantic Ocean. The expedition chartered mv Signalhorn from Martin Karlsen AS of Brandal, Norway, for a period of 52 days; after some delay, due to a mechanical emergency in the North Sea, she sailed from Aberdeen on 20 July. The journey was slow and rough and featured an abortive attempt to take the shorter route round north-east Iceland. On 26 July the east Greenland coast was sighted at lat 68 N in fine weather. Aputitq and the Kangerdlugssuaq area were beset by heavy pack ice, but good progress was made northwards along Blosseville Kyst through moderately open water about five miles offshore.


1991 ◽  
Vol 152 ◽  
pp. 24-29
Author(s):  
N Henriksen

The third and last season of the North-East Greenland project between latitudes 75° and 78°N was completed in July and August 1990. The main aims of the studies in North-East Greenland include compilation of a 1:500 000 geological map sheet covering the area between Grandjean Fjord (75°N) and Jökelbugten (78°N), and regional geological investigations to provide an understanding of the general geology of the region. A preliminary evaluation of the potential for hydrocarbons and mineral resources was included in the project, and took the form of investigations of the onshore remnants of Phanerozoic sedimentary basins (Stemmerik & Piasecki, 1990) and a geochemical exploration reconnaissance.


Author(s):  
Feiko Kalsbeek ◽  
Lilian Skjernaa

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kalsbeek, F., & Skjernaa, L. (1999). The Archaean Atâ intrusive complex (Atâ tonalite), north-east Disko Bugt, West Greenland. Geology of Greenland Survey Bulletin, 181, 103-112. https://doi.org/10.34194/ggub.v181.5118 _______________ The 2800 Ma Atâ intrusive complex (elsewhere referred to as ‘Atâ granite’ or ‘Atâ tonalite’), which occupies an area of c. 400 km2 in the area north-east of Disko Bugt, was emplaced into grey migmatitic gneisses and supracrustal rocks. At its southern border the Atâ complex is cut by younger granites. The complex is divided by a belt of supracrustal rocks into a western, mainly tonalitic part, and an eastern part consisting mainly of granodiorite and trondhjemite. The ‘eastern complex’ is a classical pluton. It is little deformed in its central part, displaying well-preserved igneous layering and local orbicular textures. Near its intrusive contact with the overlying supracrustal rocks the rocks become foliated, with foliation parallel to the contact. The Atâ intrusive complex has escaped much of the later Archaean and early Proterozoic deformation and metamorphism that characterises the gneisses to the north and to the south; it belongs to the best-preserved Archaean tonalite-trondhjemite-granodiorite intrusions in Greenland.


Author(s):  
Jesper Kresten Nielsen ◽  
Mikael Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Pedersen, M. (1998). Hydrothermal activity in the Upper Permian Ravnefjeld Formation of central East Greenland – a study of sulphide morphotypes. Geology of Greenland Survey Bulletin, 180, 81-87. https://doi.org/10.34194/ggub.v180.5090 _______________ Bituminous shales of the Ravnefjeld Formation were deposited in the subsiding East Greenland basin during the Upper Permian. The shales are exposed from Jameson Land in the south (71°N; Fig. 1) to Clavering Ø in the north (74°20′N) and have attracted considerable attention due to their high potential as hydrocarbon source rocks (Piasecki & Stemmerik 1991; Scholle et al. 1991; Christiansen et al. 1992, 1993a, b). Furthermore, enrichment of lead, zinc and copper has been known in the Ravnefjeld Formation on Wegener Halvø since 1968 (Lehnert-Thiel 1968; Fig. 1). This mineralisation was assumed to be of primary or early diagenetic origin due to similarities with the central European Kupferschiefer (Harpøth et al. 1986). Later studies, however, suggested base metal mineralisation in the immediately underlying carbonate reefs to be Tertiary in age (Stemmerik 1991). Due to geographical coincidence between the two types of mineralisation, a common history is a likely assumption, but a timing paradox exists. A part of the TUPOLAR project on the ‘Resources of the sedimentary basins of North and East Greenland’ has been dedicated to re-investigation of the mineralisation in the Ravnefjeld Formation in order to determine the genesis of the mineralisation and whether or not primary or early diagenetic base metal enrichment has taken place on Wegener Halvø, possibly in relation to an early period of hydrothermal activity. One approach to this is to study the various sulphides in the Ravnefjeld Formation; this is carried out in close co-operation with a current Ph.D. project at the University of Copenhagen, Denmark. Diagenetically formed pyrite is a common constituent of marine shales and the study of pyrite morphotypes has previously been successful from thermalli immature parts of elucidating depositional environment and thermal effects in the Alum Shale Formation of Scandinavia (Nielsen 1996; Nielsen et al. 1998). The present paper describes the preliminary results of a similar study on pyrite from thermally immature parts of the Ravnefjeld Formation which, combined with the study of textures of base metal sulphides in the Wegener Halvø area (Fig. 1), may provide an important step in the evaluation of the presence or absence of early thermal activity on (or below) the Upper Permian sea floor.


Author(s):  
Henrik Højmark Thomsen ◽  
Niels Reeh ◽  
Ole B. Olesen ◽  
Carl Egede Bøggilde ◽  
Wolfgang Starzer ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Højmark Thomsen, H., Reeh, N., Olesen, O. B., Egede Bøggilde, C., Starzer, W., Weidick, A., & Higgins, A. K. (1997). The Nioghalvfjerdsfjorden glacier project, North-East Greenland: a study of ice sheet response to climatic change. Geology of Greenland Survey Bulletin, 176, 95-103. https://doi.org/10.34194/ggub.v176.5073 _______________ Glaciological research was initiated in 1996 on the floating glacier tongue filling Nioghalvfjerdsfjorden in NorthEast Greenland (Fig. 1), with the aim of acquiring a better understanding of the response of the Greenland ice sheet (Inland Ice) to changing climate, and the implications for future sea level. The research is part of a three year project (1996–98) to advance research into the basic processes that contribute to changes in the ocean volume with a changing climate. Five nations are participants in the project, which is supported by the European Community (EC) Environment and Climate Programme. The Geological Survey of Denmark and Greenland (GEUS) and the Danish Polar Center are the Danish partners in the project, both with integrated research themes concentrated on and around Nioghalvfjerdsfjorden.


2021 ◽  
pp. 23-31
Author(s):  
Y. I. Gladysheva

Nadym-Pursk oil and gas region has been one of the main areas for the production of hydrocarbon raw materials since the sixties of the last century. A significant part of hydrocarbon deposits is at the final stage of field development. An increase in gas and oil production is possible subject to the discovery of new fields. The search for new hydrocarbon deposits must be carried out taking into account an integrated research approach, primarily the interpretation of seismic exploration, the creation of geological models of sedimentary basins, the study of geodynamic processes and thermobaric parameters. Statistical analysis of geological parameters of oil and gas bearing complexes revealed that the most promising direction of search are active zones — blocks with the maximum sedimentary section and accumulation rate. In these zones abnormal reservoir pressures and high reservoir temperatures are recorded. The Cretaceous oil and gas megacomplex is one of the main prospecting targets. New discovery of hydrocarbon deposits are associated with both additional exploration of old fields and the search for new prospects on the shelf of the north. An important area of geological exploration is the productive layer of the Lower-Berezovskaya subformation, in which gas deposits were discovered in unconventional reservoirs.


Author(s):  
Tonny B. Thomsen ◽  
Christian Knudsen ◽  
Alana M. Hinchey

A multidisciplinary provenance study was conducted on stream sediment samples from major rivers in the eastern part of Labrador, Canada (Fig. 1). Th e purpose was to fi ngerprint the sources that deliver material to the stream sediments and to the reservoir sand units deposited off shore in the sedimentary basins in the Labrador Sea. We used a multimineral U-Pb geochronological approach employing rutile and titanite in addition to zircon to obtain unbiased age data. Th e purpose of this was to characterise the diff erent igneous and metamorphic episodes that occurred in Labrador, which is an area with highly variable geology characterised by the Palaeoproterozoic south-eastern Churchill province in the north-west, the Archaean Nain plutonic suite in the north-east, the Palaeoproterozoic Makkovik province in the east and the Mesoproterozoic Grenville Province to the south. Th e fi eld work was carried out in 2012 and 2013 and the study is a collaborative project between the Geological Survey of Denmark and Greenland and the Geological Survey of Newfoundland and Labrador. In this paper we focus on three samples from the southern part of the study area where two parts of the Grenville orogeny are found (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document