scholarly journals NODULE SENESCENCE AND BIOMASS COMPONENTS IN COMMON BEAN CULTIVARS

2008 ◽  
Vol 31 (3) ◽  
pp. 195
Author(s):  
Fabián Fernández-Luqueño ◽  
David Espinosa-Victoria ◽  
Antonio Munive ◽  
Langen Corlay Chee ◽  
Luis M. Serrano-Covarrubias

Most legumes establish mutualistic symbiotic relationships with atmospheric nitrogen-fixing bacteria (rhizobia), giving origin to nodules. Nodules exhibit natural or induced aging which coincides with the drop in nitrogenase activity at the flowering period or at the pod filling stage. In this research, the onset of nodule senescence (NS) was evaluated under greenhouse conditions in five common bean (Phaseolus vulgaris L.) cultivars of two growth habits, determined (Type I) and indeterminate (Type III), inoculated with Rhizobium etli CE-3. Weekly destructive samplings were taken to determine nitrogen fixation by the acetylene reduction assay, the number and fresh weight of nodules, as well as root and above ground biomass dry weight. It was found that NS in bean appears to be independent of host plant phenological stage (flowering or pod filling), the longer period the symbiotic system is fixing nitrogen the greater yield is obtained, and that the nodules number and fresh weight are reliable indicators of the nitrogen fixation capacity.

2000 ◽  
Vol 12 (3) ◽  
pp. 195-202 ◽  
Author(s):  
SUSANA GONNET ◽  
PEDRO DÍAZ

Lotus corniculatus, L. tenuis, L. pedunculatus, and L. subbiflorus inoculated with Mesorhizobium loti NZP2037 strain were grown in a growth chamber. The plants dry weight (DW), the nodule fresh weight (FW), the nitrogenase activity, the nodule glutamine synthetase (GS) and glutamate synthase (GOGAT) activities, as well as the leghemoglobin content and the amino acid in the stem were measured 28 days after inoculation. The highest DW of plants was measured in L. tenuis and the highest FW of nodules was measured in L. pedunculatus. Nitrogenase activity in L. tenuis, L. pedunculatus and L. subbiflorus was six fold the activity in L. corniculatus. Nodule GS and GOGAT activities did not follow this same pattern. L. tenuis had the highest values of GS and GOGAT activities in the nodule, and a high nitrogenase activity which is consistent with its high plant DW. The four species of Lotus were compared and no correlation between nitrogen fixation parameters and ammonia assimilation enzymes was found, but the GS/GOGAT ratio has a positive and significant correlation (r²=0.82**) with the amino acid content in stems.


1988 ◽  
Vol 110 (2) ◽  
pp. 321-329 ◽  
Author(s):  
R. Rai

SummaryHigh-temperature-adapted strains RAU 1, RAU 2 and RAU 3 ofAzospirillum brasilenseC 7 were isolated from stepwise transfer to higher temperature (30 to 42 °C). One of the strains (RAU 1) showed more growth, greater nitrogenase and hydrogenase activities at 30 and 42 °C than parental and other temperature-adapted strains. This strain also showed growth and more nitrogenase activity from pH 6·5 to 8·0. Strain RAU 1 showed cross-resistance to penicillin (300/µg/ml) but not to streptomycin, kanamycin, viomycin and polymixin B at 30 and 42 °C. It was demonstrated in field plots in calcareous soil that seed inoculation with RAU 1 enhanced mineral uptake of cheena. Inoculation with RAU 1 led to a significant increase in associative nitrogen fixation, dry weight of roots, grain and straw yield of cheena compared with the uninoculated control with or without applied N, but the effect of seed inoculation with high-temperature-adapted strains was variable with different genotypes of cheena.


1985 ◽  
Vol 104 (1) ◽  
pp. 207-215 ◽  
Author(s):  
R. Rai

SummaryNitrosoguanidine-induced mutation frequencies for resistance to streptomycin, spectinomycin, erythromycin and novomycin were studied inAzospirillum brasilense.Lentil inoculated withA. brasilenseand its mutants andRhizobiumstrains produced increased nodule dry weight, nitrogenase activity of nodules and roots and grain yield compared with an uninoculated control.


2002 ◽  
Vol 82 (2) ◽  
pp. 291-298 ◽  
Author(s):  
W. John Bullied ◽  
Terry J. Buss ◽  
J. Kevin Vessey

Bacillus cereus strain UW85 was assessed for growth-promotion effects on soybean and common bean in the presence and absence of rhizobial inoculation at two field sites in Manitoba in 1994. Growth promotions due to B. cereus UW85 occurred for soybean only, and only at one site. Promotions in plant emergence in soybean were apparent at 60 d after planting (DAP), but stimulations in shoot dry weight (DW), N concentration, and N content were not apparent until 90 DAP. At maturity (120 DAP), inoculation with UW85 resulted in stimulation of seed yield by 9% and seed N content by 14%. However, stimulation in growth and N parameters by UW85 treatment was proportionally greater in the absence of B. japonicum inoculation than in the presence of the rhizobial inoculant. These observations, in combination with the observations that nitrogenase activity was not stimulated by UW85 treatment, clearly indicate that the UW85-mediated stimulation of growth and N accumulation of soybean is via a generalized stimulation of plant growth, and not via a stimulation in the soybean-B. japonicum symbiosis per se. Overall, our study indicates that inoculation with UW85 has the potential of increasing soybean production in western Canada, but these effects are site specific and are not seen in common bean. Key words: Bacillus cereus UW85, common bean, Glycine max, growth-promotion, Phaseolus vulgaris, soybean


1986 ◽  
Vol 13 (2) ◽  
pp. 86-89 ◽  
Author(s):  
S. Arrendell ◽  
J. C. Wynne ◽  
G. H. Elkan ◽  
T. J. Schneeweis

Abstract Improvement of the host contribution to nitrogen fixation has been proposed as a method of increasing nitrogen fixation. Significant variability and generally high broad-sense heritability estimates (.60 ± .27 to .82 ± .26 for nitrogenase activity and .53 ± .29 to .85 ± .26 for shoot dry weight) have been reported for F2-derived families from a cross between the Virginia (Arachis hypogaea L. ssp. hypogaea var. hypogaea) cultivar NC 6 and the Spanish (ssp. fastigiata Waldron vulgaris Harz.) breeding line 922, indicating selection for increased nigtogen fixation should be effective in this population. Lines from this population were chosen randomly from F2-derived families selected for high and low nitrogenase activity and high and low shoot dry weight after evaluation at three dates and two locations in each of 2 years (F5 and F6 generations). This study's objectives were to evaluate the N2-fixing ability of the selected lines and to evaluate the association between plant growth habit and N2 fixation. Twenty-four lines in each of the four selection groups and the parents, NC 6 and 922, were evaluated at two sampling dates and two locations. Mean nitrogenase activity of lines selected for increased nitrogenase activity was significantly greater than the mean of the lines selected for low nitrogenase activity. Improved nitrogenase activity was associated with increased fruit weight. The fruit weight mean of the group selected for increased fruit weight. The fruit weight mean of the group selected for increased nitrogenase activity was 39% greater than the mean of the group selected for low nitrogenase activity. Mean shoot dry weight of lines selected for increased shoot dry weight was significantly greater than the mean of the lines selected for low shoot dry weight; however, the fruit weight means of these two groups did not differ. It was hypothesized that selection for increased N2 fixation in a population derived from a cross between Virginia and Spanish types would eliminate genotypes with Spanish growth habit. Groups selected for high nitrogenase activity and for high shoot dry weight had longer and wider leaflets, longer cotyledonary laterals and greater main stem height than did their respective low selection groups. However, these traits chosen to characterize plant growth habit were inadequate in discriminating parental growth habits. Consequently, the data neither substantiated nor refuted the hypothesis.


2003 ◽  
Vol 38 (3) ◽  
pp. 339-347 ◽  
Author(s):  
Maria Lucrecia Gerosa Ramos ◽  
Richard Parsons ◽  
Janet Irene Sprent ◽  
Euan Kelvin James

The aim of this work was to investigate the effect of water stress on N2 fixation and nodule structure of two common bean (Phaseolus vulgaris L.) cultivars Carioca and EMGOPA-201. Plants were harvested after five and eight days of water stress. Carioca had lower nodule dry weight on both water stress periods; shoot dry weight was lower at five days water stress and did not differ from control after eight days stress. Both cultivars had lower nitrogenase activity than control after five and eight days water stress. For both cultivars, after eight days stress bacteroid membranes were damaged. Carioca presented more pronounced damage to infected tissue, with host cell vacuolation and loss of the peribacteroid membrane at five days after stress; at eight days after stress, there was degradation of cytoplasm host cells and senescence of bacteroids, with their release into intercellular spaces. Intensity of immunogold-labeling of intercellular cortical glycoprotein with the monoclonal antibodies MAC 236/265 was different for both cultivars.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Ernest Wandera Ouma ◽  
Anne Mercy Asango ◽  
John Maingi ◽  
Ezekiel Mugendi Njeru

Identification of effective indigenous rhizobia isolates would lead to development of efficient and affordable rhizobia inoculants. These can promote nitrogen fixation in smallholder farming systems of Kenya. To realize this purpose, two experiments were conducted under greenhouse conditions using two common bean cultivars; Mwezi moja (bush type) and Mwitemania (climbing type) along with soybean cultivar SB 8. In the first experiment, the common bean cultivars were treated with rhizobia inoculants including a consortium of native isolates, commercial isolate (CIAT 899), a mixture of native isolates and CIAT 899, and a control with no inoculation. After 30 days, the crop was assessed for nodulation, shoot and root dry weights, and morphological features. In the second experiment, soybean was inoculated with a consortium of native isolates, commercial inoculant (USDA 110), and a mixture of commercial and native isolates. Remarkably, the native isolates significantly (p<0.001) increased nodulation and shoot dry weight across the two common bean varieties compared to the commercial inoculant, CIAT 899. Mixing of the native rhizobia species and commercial inoculant did not show any further increase in nodulation and shoot performance in both crops. Further field studies will ascertain the effectiveness and efficiency of the tested indigenous isolates.


2001 ◽  
Vol 67 (9) ◽  
pp. 4009-4016 ◽  
Author(s):  
Ann J. Auman ◽  
Catherine C. Speake ◽  
Mary E. Lidstrom

ABSTRACT Some methane-oxidizing bacteria (methanotrophs) are known to be capable of expressing nitrogenase and utilizing N2 as a nitrogen source. However, no sequences are available fornif genes in these strains, and the known nitrogen-fixing methanotrophs are confined mainly to a few genera. The purpose of this work was to assess the nitrogen-fixing capabilities of a variety of methanotroph strains. nifH gene fragments from four type I methanotrophs and seven type II methanotrophs were PCR amplified and sequenced. Nitrogenase activity was confirmed in selected type I and type II strains by acetylene reduction. Activities ranged from 0.4 to 3.3 nmol/min/mg of protein. Sequence analysis shows that thenifH sequences from the type I and type II strains cluster with nifH sequences from other gamma proteobacteria and alpha proteobacteria, respectively. The translatednifH sequences from three Methylomonas strains show high identity (95 to 99%) to several published translated environmental nifH sequences PCR amplified from rice roots and a freshwater lake. The translated nifHsequences from the type II strains show high identity (94 to 99%) to published translated nifH sequences from a variety of environments, including rice roots, a freshwater lake, an oligotrophic ocean, and forest soil. These results provide evidence for nitrogen fixation in a broad range of methanotrophs and suggest that nitrogen-fixing methanotrophs may be widespread and important in the nitrogen cycling of many environments.


1985 ◽  
Vol 105 (2) ◽  
pp. 261-270 ◽  
Author(s):  
R. Rai

SUMMARYAzospirillum brasilense was treated with nitrosoguanidine and five antibiotic-resistant mutant strains isolated. Variations in growth, N2-fixation, ultraviolet-dark survival and level of antibiotic resistance were found between the mutant strains. Mutant strains STR 112 and KR 2051 showed maximum nitrogenase activity, glutamine synthetase activity and hydrogenase activity (H2uptake) at 32 °C and 40 °C respectively. Inoculation of cheena genotypes withA. brasilenseand its mutants led to significant increase in associative nitrogen fixation, dry weight of roots and grain yield compared with the uninoculated control, with significant strains × genotypes interactions in calcareous soil. It was also noted that under laboratory conditionsAzospirilluminoculation may have produced its response by hormonal means and/or associative N2-fixation.


1977 ◽  
Vol 4 (3) ◽  
pp. 403 ◽  
Author(s):  
SE Smith ◽  
MJ Daft

Nodulated Medicago sativa cv. Europe plants, both non-mycorrhizal and mycorrhizal (inoculated with Glomus mosseae), were grown in sand or soil with a range of phosphate levels. The following parameters were measured: intensity of mycorrhizal infection, intensity of nodulation, growth, phosphate content, nitrogenase activity (acetylene reduction) and nitrogen content. Both nodulation and mycorrhizal infection had occurred within 2 weeks of inoculation with the appropriate endophytes. Major increases in dry weight of mycorrhizal plants were not apparent until approximately 10 weeks from inoculation. However, mycorrhizal plants showed more extensive nodulation, coupled with higher rates of nitrogenase activity from 2 weeks onwards, and at the final (12-week) harvest had higher values of % N. Phosphate content of mycorrhizal plants (�g P/g dry wt) was also greater than non-mycorrhizal plants at 7 weeks. By 10 or 12 weeks, when significant mycorrhizal enhancement of growth was apparent, the total nitrogen and total phosphorus per mycorrhizal plant were also higher, but nitrogenase activity and phosphate content measured on a dry weight basis showed no significant differences between mycorrhizal and non-mycorrhizal plants. It is clear that mycorrhizal enhancement of phosphate uptake and nitrogen fixation precedes any effect on growth and the results indicate the importance of the time factor in the development of this tripartite symbiosis between legume, Rhizobium and mycorrhizal fungus.


Sign in / Sign up

Export Citation Format

Share Document