scholarly journals Effect on high rise structure expose to blast load

The impression of blast load on building is very important things to consider in a design process. A bomb detonation within structures or straightaway the building can drive damage on the building either in external or internal structural frames, by collapse of walls etc. These kinds of affliction are uncommon and man-made disasters. The impact of blast load is equivalent to a dynamic loads and that demand to take caution while calculating of it. Someone can calculate as other lateral forces like earthquake and wind load. Design fully blast resistant structures is not pragmatic and economic, till the knowledge of mitigating its effect while designing new structures or maintaining old one with its less impact is identical. In this present study, the behavior of G+15 storey RCC structure is analyzed under the blast load with the help of ETAB software. According to the IS code provision, the dead load, live load and wind load has been considered to study the effect of it. Also, the distance of blast and its charge weight is very according to IS 4991-1968.

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Elisa Sarmento Soares ◽  
Julistyana Tistogondo

The bridge that will be planned is resettled in Manatuto, with a span of 100 m and a width of 9.74 m. In this Final Project Preparation, the Sahen Soibada Bridge was redesigned using Girder I beams with a cross section height of 2300 mm, prestressive concrete quality K 300 and Fc ’41.5 Mpa Calculation of loading on the bridge using SNI 1725: 2015, Analysis of the load that occurs is analysis of dead load, additional dead load, live load, wind load and analysis of the influence of time such as crawling and shrinkage and loss of prestressing. Then the results of the analysis carried out stress control that occurred in the structure. As well as for the structure of the budget for the 100 m WF Baja bridge that is equal to US $ 3,384 214.13 while for Concrete that is equal to 3,070,804.08.


Author(s):  
Nasra Mohammed Nasser Al-Azri ◽  
Sachin Kuckian ◽  
Himanshu Gaur

Recent Years, Many high rise buildings are being constructed across the world due to the increase in population. From the design point of view, lateral load such as earthquake and wind load should be taken into consideration while designing process. Architectural design of buildings sometimes leads towards difficult and unusual shape that challenges structural designers. The objective of this study is to assess the building behavior when subjected to wind load. To achieve this objective, different shapes of building such as pentagonal, triangular and circular building are assessed for stability. Parameters such as storey drift and lateral displacement are considered in order to find most effective and stable shape. The computer program ETABS is used for analysis. As the height of the building increases, wind load effect becomes significant and should be considered for designing. This could also be achieved by selecting most stable shape and appropriate structural system for tall buildings.


Author(s):  
Olga I. Poddaeva ◽  
Oleg O. Egorychev ◽  
Zhanna I. Nagornova

Introduction. The article is devoted to the description of the method of experimental modeling of wind effects on buildings and structures located in dense urban areas. The relevance of the research topic is explained by the increase in the density of urban development in large cities, as well as the tendency to the point construction of high-rise buildings in areas with existing low-rise, historical buildings. Materials and methods. Experimental modeling in a wind tunnel is considered as a research method. Studies were conducted on a reduced geometrically similar model of the real object. As measuring equipment was used the research system, which based on differential strain-gauge pressure sensors. The results of experimental studies are presented in the form of dimensionless aerodynamic pressure coefficients. The object under study is a building consisting of three non-high-rise and one designed high-rise buildings. In order to assess the impact of the designed building on the wind load on the existing building structures, three different schemes of their location were considered. Results. Parameters of wind load (aerodynamic coefficients) on existing building structures were determined and exponential graphs of the dependence of the average values of the aerodynamic coefficients on the location of the height structure and the angle of attack of the incident air flow were constructed. Conclusions. The results of the research suggest a significant decrease in the average wind load on the buildings of the existing building when the high-rise building is located near it, which indicates the beneficial effect of this arrangement of buildings on the aerodynamic situation of the area in terms of wind load on the buildings themselves. Nevertheless, at the stage of development of project documentation for each such facility, it is recommended to conduct comprehensive studies, where, in addition to the wind load, the impact of the designed structures on the aeration and bioclimatic comfort of the development area will be assessed.


2019 ◽  
Vol 43 (3) ◽  
pp. 229-249 ◽  
Author(s):  
Shahrzad Soudian ◽  
Umberto Berardi

This article investigates the possibility to enhance the use of latent heat thermal energy storage (LHTES) as an energy retrofit measure by night ventilation strategies. For this scope, phase change materials (PCMs) are integrated into wall and ceiling surfaces of high-rise residential buildings with highly glazed facades that experience high indoor diurnal temperatures. In particular, this article investigates the effect of night ventilation on the performance of the PCMs, namely, the daily discharge of the thermal energy stored by PCMs. Following previous experimental tests that have shown the efficacy of LHTES in temperate climates, a system comprising two PCM layers with melting temperatures selected for a year-around LHTES was considered. To quantify the effectiveness of different night ventilation strategies to enhance the potential of this composite PCM system, simulations in EnergyPlusTM were performed. The ventilation flow rate, set point temperature, and operation period were the main tested parameters. The performance of the PCMs in relation to the variables was evaluated based on indoor operative temperature and cooling energy use variations in Toronto and New York in the summer. The solidification of the PCMs was analyzed based on the amount of night ventilation needed in each climate condition. The results quantify the positive impact of combining PCMs with night ventilation on cooling energy reductions and operative temperature regulation of the following days. In particular, the results indicate higher benefits obtainable with PCMs coupled with night ventilation in the context of Toronto, since this city experiences higher daily temperature fluctuations. The impact of night ventilation design variables on the solidification rate of the PCMs varied based on each parameter leading to different compromises based on the PCM and climate characteristics.


2021 ◽  
Vol 11 (14) ◽  
pp. 6537
Author(s):  
Marian Łupieżowiec

The article presents the concept of monitoring buildings and infrastructure elements located near large construction investments (the construction of high-rise buildings of the Oak Terraces housing estate in Katowice and the construction of a tunnel under the roundabout in Katowice along the intercity express road DTŚ). The impacts include deep excavation, lowering of the groundwater level over a large area, and dynamic influences related to the use of impact methods of soil improvement. The presented monitoring includes observation of the groundwater level with the use of piezometers, geodetic measurements of settlement and inclinations, as well as the measurement of vibration amplitudes generated during the works involving shocks and vibrations. It was also important to observe the development of cracks on the basis of a previously made inventory of damage. The results of the monitoring allow corrections to be made in the technology of works (e.g., reduction of vibration amplitudes, application of additional protections at excavations, etc.) or the use additional safety measures. Currently, there are also monitoring systems used during the operation of completed facilities.


2020 ◽  
Vol 205 ◽  
pp. 104282 ◽  
Author(s):  
Marie Skytte Thordal ◽  
Jens Chr Bennetsen ◽  
Stefano Capra ◽  
Andreas K. Kragh ◽  
H. Holger H. Koss

Author(s):  
Camila Freitas Salgueiredo ◽  
Armand Hatchuel

AbstractIs biologically inspired design only an analogical transfer from biology to engineering? Actually, nature does not always bring “hands-on” solutions that can be analogically applied in classic engineering. Then, what are the different operations that are involved in the bioinspiration process and what are the conditions allowing this process to produce a bioinspired design? In this paper, we model the whole design process in which bioinspiration is only one element. To build this model, we use a general design theory, concept–knowledge theory, because it allows one to capture analogy as well as all other knowledge changes that lead to the design of a bioinspired solution. We ground this model on well-described examples of biologically inspired designs available in the scientific literature. These examples include Flectofin®, a hingeless flapping mechanism conceived for façade shading, and WhalePower technology, the introduction of bumps on the leading edge of airfoils to improve aerodynamic properties. Our modeling disentangles the analogical aspects of the biologically inspired design process, and highlights the expansions occurring in both knowledge bases, scientific (nonbiological) and biological, as well as the impact of these expansions in the generation of new concepts (concept partitioning). This model also shows that bioinspired design requires a special form of collaboration between engineers and biologists. Contrasting with the classic one-way transfer between biology and engineering that is assumed in the literature, the concept–knowledge framework shows that these collaborations must be “mutually inspirational” because both biological and engineering knowledge expansions are needed to reach a novel solution.


Sign in / Sign up

Export Citation Format

Share Document