scholarly journals Simulasi Performa Turbin Propeller Dengan Sudut Pitch Yang Divariasikan

2020 ◽  
Vol 6 (1) ◽  
pp. 54
Author(s):  
Pribadyo Pribadyo ◽  
Hadiyanto H ◽  
Jamari J

 Propeller turbine performance can be improved by changing the turbine design parameters. One method that was developed is to vary the blade angle on the runner's blades. Analysis of the influence of blade angle on propeller turbine performance is done through numerical simulations based on computational fluid dynamics. The simulation is done with variations of propeller turbine blade angles of 180, 230, and 280 at flow rates of 0.08 m/s to 0.5 m/s. Simulation results show turbines with 250 blade angles have the best performance compared to turbine blade angles of 230 and 280. While the turbine blade angles of 230 tend to have higher performance compared to angles of 280 even though both have peak values for the corresponding power coefficient. Keywords—Propeller turbine, runner blade, pitch angle, CFD simulation

Author(s):  
Corvis L. Rantererung ◽  
Sudjito Soeparman ◽  
Rudy Soenoko ◽  
Slamet Wahyudi

The dynamics of fluid flow are very important to the process of converting water energy into mechanical energy at the nozzle double runner cross flow turbine blade. Fluid dynamics of a jet of water from a nozzle release energy as the water crosses the cross flow turbine runner. This research aims to improve turbine performance and the effectiveness of fluid flow dynamics that drive cross flow turbine runner blades using double nozzles. The method of research using a cross flow turbine with double nozzle is a combination of vertical and horizontal nozzles. The turbine runner casing and blade are made of transparent acrylic material so that the flow dynamics can be observed directly. The laboratory scale double nozzle cross flow turbine is comprised of 24 blades, 3 mm thick, 40 mm long and 200 mm runner blade diameter. Test the performance of the turbine by measuring rotation, torque, and power, and by photographing the dynamics of the fluid flow that drives the turbine runner blade. The results of the study found that the visualization of the dynamics of fluid flow in turbines with double nozzles is more regular, evenly distributed, focused, and directed, moving the turbine runner blade cross flow so as to be able to increase turbine performance higher. The highest double nozzle cross flow turbine performance is 6.04 Watt power and 81.68% efficiency, at a water discharge of 0.22 liters /s.


2018 ◽  
Vol 26 (7) ◽  
pp. 124-149 ◽  
Author(s):  
Muhammad .A.R Yass ◽  
Saadi Turied Kurdi ◽  
Mahmood Abdulzahra Shkara

This research analysis and optimizes the main wind horizontal turbine blade parameters for high-performance altitude with variable pitch blade angle for different blade cross-section unsymmetrical airfoil NACA 4412 and unsymmetrical airfoil supercritical Eppler 417. For deep specification, some wind horizontal turbine parameters kept constant through the proses method to integrate the highest behavior of windmill turbine power coefficient. The procedure analysis with FORTRAN.90 code ,then compare with German code and then optimized using Schmitz and Betz method for blade chord and lift to drag for blade pitch angle. From theoretical results discussion, important conclusions figured; also a recommendation for further work was suggested. Best optimization methods were Schmitz chord optimization and Lift/Drag twist optimization which increases the Cp 10.3% for Eppler 4417 and 9.5% for NACA 4412.All results were tabulated and plotted for all optimization results


2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


Author(s):  
Markus Waesker ◽  
Bjoern Buelten ◽  
Norman Kienzle ◽  
Christian Doetsch

Abstract Due to the transition of the energy system to more decentralized sector-coupled technologies, the demand on small, highly efficient and compact turbines is steadily growing. Therefore, supersonic impulse turbines have been subject of academic research for many years because of their compact and low-cost conditions. However, specific loss models for this type of turbine are still missing. In this paper, a CFD-simulation-based surrogate model for the velocity coefficient, unique incidence as well as outflow deviation of the blade, is introduced. This surrogate model forms the basis for an exemplary efficiency optimization of the “Colclough cascade”. In a first step, an automatic and robust blade design methodology for constant-channel blades based on the supersonic turbine blade design of Stratford and Sansome is shown. The blade flow is fully described by seven geometrical and three aerodynamic design parameters. After that, an automated numerical flow simulation (CFD) workflow for supersonic turbine blades is developed. The validation of the CFD setup with a published supersonic axial turbine blade (Colclough design) shows a high consistency in the shock waves, separation zones and boundary layers as well as velocity coefficients. A design of experiments (DOE) with latin hypercube sampling and 1300 sample points is calculated. This CFD data forms the basis for a highly accurate surrogate model of supersonic turbine blade flow suitable for Mach numbers between 1.1 and 1.6. The throat-based Reynolds number is varied between 1*104 and 4*105. Additionally, an optimization is introduced, based on the surrogate model for the Reynolds number and Mach number of Colclough and no degree of reaction (equal inlet and outlet static pressure). The velocity coefficient is improved by up to 3 %.


2016 ◽  
Vol 842 ◽  
pp. 164-177 ◽  
Author(s):  
Indra Djodikusumo ◽  
I. Nengah Diasta ◽  
Iwan Sanjaya Awaluddin

This paper aims to demonstrate how to model, mesh and simulate a hydraulic propeller turbine runner based on the geometrical specification of the runner blade. Modeling process is divided into preparation and implementation phase. Preparation phase illustrates how to develop stream surfaces and passages, how to create and transform meanline and how to create an rtzt file. The profile in rtzt file has a certain fix thickness which has to be altered later. Implementation phase describes operations necessary in creating a propeller runner model in ANSYS BladeGen which consist of importing rtzt file, modifying the trailing edge properties and altering profile thickness distribution to that of 4 digits NACA airfoil standard. Grid is generated in ANSYS TurboGrid utilizing ATM Optimized topology. CFD simulation is done using the ANSYS Fluent with pressure inlet and pressure outlet boundary conditions and k-ε turbulence model. Hydraulic efficiency of the runner is calculated utilizing Turbo Topology module in ANSYS Fluent. The authors will share the advantages that may be obtained by using ANSYS BladeGen compared with the use of general CAD Systems.


Author(s):  
T. Karthikeyan ◽  
E. J. Avital ◽  
N. Venkatesan ◽  
A. Samad

Ocean stores a huge amount of energy and ocean current energy can be a viable source in future. In this article, an axial marine current turbine has been optimized to enhance its power coefficient through numerical modeling. The blade pitch-angle and number of blades are the design parameters chosen for the analysis to find the optimal design. A commercial code for CFD simulations with in-house optimization code was used for the analysis. It was found that, changing the blade pitch-angle and reducing the number of blades can improve the turbine’s coefficient of power. This is due to increase in lift and reduction of losses caused by turbulence near the downstream of the turbine. The article presents flow-simulation difficulties and characteristic curves to identify the differences between the actual and optimized turbine. The detailed flow physics is discussed and pictured in the post processed plots.


2011 ◽  
Vol 354-355 ◽  
pp. 631-635
Author(s):  
Ling Hua Wang ◽  
Pan Hua Ning ◽  
Chao Gan

This paper analyses quantitatively mechanism that hydraulic turbine runner blade tail produces Carmen vortex column, and the blade hydraulic elastic vibration which is produced by Carmen vortex column, also analyses the harms of blade hydraulic resonance, puts forward corresponding preventative measures. For the stable operation of large Francis hydraulic turbine, these measures have reference meaning.


Author(s):  
Marc Gugau ◽  
Harald Roclawski

With emission legislation becoming more stringent within the next years, almost all future internal combustion gasoline engines need to reduce specific fuel consumption, most of them by using turbochargers. Additionally, car manufactures attach high importance to a good drivability, which usually is being quantified as a target torque already available at low engine speeds—reached in transient response operation as fast as possible. These engine requirements result in a challenging turbocharger compressor and turbine design task, since for both not one single operating point needs to be aerodynamically optimized but the components have to provide for the optimum overall compromise for maximum thermodynamic performance. The component design targets are closely related and actually controlled by the matching procedure that fits turbine and compressor to the engine. Inaccuracies in matching a turbine to the engine full load are largely due to the pulsating engine flow characteristic and arise from the necessity of arbitrary turbine map extrapolation toward low turbine blade speed ratios and the deficient estimation of turbine efficiency for low engine speed operating points. This paper addresses the above described standard problems, presenting a methodology that covers almost all aspects of thermodynamic turbine design based on a comparison of radial and mixed-flow turbines. Wheel geometry definition with respect to contrary design objectives is done using computational fluid dynamics (CFD), finite element analysis (FEA), and optimization software. Parametrical turbine models, composed of wheel, volute, and standard piping allow for fast map calculation similar to steady hot gas tests but covering the complete range of engine pulsating mass flow. These extended turbine maps are then used for a particular assessment of turbine power output under unsteady flow admission resulting in an improved steady-state matching quality. Additionally, the effect of various design parameters like either volute sizing or the choice of compressor to turbine diameter ratio on turbine blade speed ratio operating range as well as well as turbine inertia effect is analyzed. Finally, this method enables the designer to comparatively evaluate the ability of a turbine design to accelerate the turbocharger speed for transient engine response while still offering a map characteristic that keeps fuel consumption low at all engine speeds.


2014 ◽  
Vol 136 (1) ◽  
Author(s):  
Shahram Derakhshan ◽  
Nemat Kasaeian

Micro hydropower station is one of the clean choices for offgrid points with available hydropotential. The challenging in this type of energy production is the high capital cost of the installed capacity that is worse for low-head micro hydropower stations. Turbine price is the main problem for this type of energy production. In this research, a simple machine has been introduced instead of conventional propeller turbines. The key is using an axial pump as a propeller turbine. In the present research, a propeller pump was simulated as a turbine by numerical methods. Computational fluid dynamics (CFD) was adopted in the direct and reverse modes performance prediction of a single propeller pump. To give a more accurate CFD result, all domains within the machine control volume were modeled and hexahedral structured mesh was generated during CFD simulation. Complete performance curves of its pump and turbine modes were acquired. For verification of the numerical results, the machine has been tested in an established test ring. The results showed that a propeller pump could be easily run as a low-head turbine. In the next, the goal was to optimize the geometry of the blades of axial turbine runner which leads to maximum hydraulic efficiency by changing the design parameters of camber line in five sections of a blade. The efficiency of the initial geometry was improved by various objective functions and optimized geometry was obtained by genetic algorithm and artificial neural network to find the best efficiency of the turbine. The results showed that the efficiency is improved by more than 14%. Indeed the geometry has better performance in cavitation.


2021 ◽  
Vol 23 (3) ◽  
pp. 31-36
Author(s):  
Filip Stojkovski ◽  
◽  
Zoran Markov

The design of radial blade cascades, with the intent to become turbine guide vanes, lies in the basis of satisfying turbine runner needs for a particular turbine design point of interest. For conventional turbine operation, the hydrodynamic parameters in the pre-runner space can be relatively easily estimated. For variable speed turbine operation at the constant head, these parameters change in a way that cannot be easily predicted using conventional techniques. In this paper, the guide vanes, as crucial turbine sub-system which needs to perform efficient runner flow feeding for these operating ranges, are numerically tested in various geometrical shapes and configurations, to observe the cascades behaviour, in a way of estimating which cascade configuration satisfies certain hydrodynamic and efficiency considerations of the operating points of interest. The criteria which the guide vanes need to meet are based on hydrodynamic parameters and expansion of the turbine operating range.


Sign in / Sign up

Export Citation Format

Share Document