scholarly journals Peningkatan Efektivitas Cooling Tower dengan Metoda Air High Speed

2021 ◽  
Vol 10 (1) ◽  
pp. 40-43
Author(s):  
Sri Wuryanti

Cooling tower merupakan suatu alat yang berfungsi untuk menyerap panas pada fluida air yang berasal dari heat exhanger (kondensor, generator air cooler, lube air cooler, boiler feed pump) menggunakan fluida udara yang dialirkan secara natural maupun dialirkan oleh fan. Kalor panas yang diserap oleh udara membutuhkan kontak yang baik antara air dan udara agar terjadi proses pendinginan yang maksimal. Proses pendinginan yang maksimal pada prakteknya tidak bisa terjadi karena dipengaruhi oleh komponen yang terpasang pada cooling tower. Penelitian ini bertujuan untuk merancang efektifitas cooling tower dengan mode high speed. Pengamatan dilakukan pada cooling tower tipe induced draft cross flow. Teknologi Material membedakan material menjadi tiga bagian yakni material cair, material gas dan material padat, disini akan merancang penggunaan material gas ideal yakni udara sebagai salah satu fokus untuk peningkatan fektivitas cooling tower. Metode yang digunakan adalah mode high speed yaitu dengan menambah keceptan udara sehingga panas yang diserap oleh udara lebih banyak. Metode perhitungannya sendiri menggunakan metode pendekatan secara langsung dan tidak langsung. Perhitungan efektivitas dengan metode langsung menggunakan neraca massa dan energi dan secara tak langsung menggunakan perhitungan cara Range and Approac. Setelah menggunakan mode high speed dengan meningkatkan kecepatan angin menjadi 3 m/s diharapkan dapat menaikkan efektivitas sebesar 27,7 %.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 797
Author(s):  
Stefan Hoerner ◽  
Iring Kösters ◽  
Laure Vignal ◽  
Olivier Cleynen ◽  
Shokoofeh Abbaszadeh ◽  
...  

Oscillating hydrofoils were installed in a water tunnel as a surrogate model for a hydrokinetic cross-flow tidal turbine, enabling the study of the effect of flexible blades on the performance of those devices with high ecological potential. The study focuses on a single tip-speed ratio (equal to 2), the key non-dimensional parameter describing the operating point, and solidity (equal to 1.5), quantifying the robustness of the turbine shape. Both parameters are standard values for cross-flow tidal turbines. Those lead to highly dynamic characteristics in the flow field dominated by dynamic stall. The flow field is investigated at the blade level using high-speed particle image velocimetry measurements. Strong fluid–structure interactions lead to significant structural deformations and highly modified flow fields. The flexibility of the blades is shown to significantly reduce the duration of the periodic stall regime; this observation is achieved through systematic comparison of the flow field, with a quantitative evaluation of the degree of chaotic changes in the wake. In this manner, the study provides insights into the mechanisms of the passive flow control achieved through blade flexibility in cross-flow turbines.


2021 ◽  
Vol 33 (2) ◽  
pp. 024108
Author(s):  
Jianqiang Chen ◽  
Siwei Dong ◽  
Xi Chen ◽  
Xianxu Yuan ◽  
Guoliang Xu

2019 ◽  
Author(s):  
Budi Santoso ◽  
Dominicus Danardono Dwi Prija Tjahjana ◽  
Genta Praha Picaso

2009 ◽  
Vol 13 (4) ◽  
pp. 91-98
Author(s):  
Elazm Abo ◽  
Farouk Elsafty

The main objective of this study is to find a proper solution for the cross-flow water cooling tower problem, also to find an empirical correlation's controlling heat and mass transfer coefficients as functions of inlet parameters to the tower. This is achieved by constructing an experimental rig and a computer program. The computer simulation solves the problem numerically. The apparatus used in this study comprises a cross-flow cooling tower. From the results obtained, the 'characteristic curve' of cross-flow cooling towers was constructed. This curve is very helpful for designers in order to find the actual value of the number of transfer units, if the values of inlet water temperature or inlet air wet bulb temperature are changed. Also an empirical correlation was conducted to obtain the required number of transfer units of the tower in hot water operation. Another correlation was found to obtain the effectiveness in the wet bulb operation.


Author(s):  
Y. Jiang ◽  
N. Gurram ◽  
E. Romero ◽  
P. T. Ireland ◽  
L. di Mare

Slot film cooling is a popular choice for trailing edge cooling in high pressure (HP) turbine blades because it can provide more uniform film coverage compared to discrete film cooling holes. The slot geometry consists of a cut back in the blade pressure side connected through rectangular openings to the internal coolant feed passage. The numerical simulation of this kind of film cooling flows is challenging due to the presence of flow interactions like step flow separation, coolant-mainstream mixing and heat transfer. The geometry under consideration is a cutback surface at the trailing edge of a constant cross-section aerofoil. The cutback surface is divided into three sections separated by narrow lands. The experiments are conducted in a high speed cascade in Oxford Osney Thermo-Fluids Laboratory at Reynolds and Mach number distributions representative of engine conditions. The capability of CFD methods to capture these flow phenomena is investigated in this paper. The isentropic Mach number and film effectiveness are compared between CFD and pressure sensitive paint (PSP) data. Compared to steady k–ω SST method, Scale Adaptive Simulation (SAS) can agree better with the measurement. Furthermore, the profiles of kinetic energy, production and shear stress obtained by the steady and SAS methods are compared to identify the main source of inaccuracy in RANS simulations. The SAS method is better to capture the unsteady coolant-hot gas mixing and vortex shedding at the slot lip. The cross flow is found to affect the film significantly as it triggers flow separation near the lands and reduces the effectiveness. The film is non-symmetric with respect to the half-span plane and different flow features are present in each slot. The effect of mass flow ratio (MFR) on flow pattern and coolant distribution is also studied. The profiles of velocity, kinetic energy and production of turbulent energy are compared among the slots in detail. The MFR not only affects the magnitude but also changes the sign of production.


Author(s):  
Tushar Sikroria ◽  
Abhijit Kushari

Abstract This paper presents the experimental analysis of the impact of swirl number of cross-flowing air stream on liquid jet spray trajectory at a fixed air flow velocity of 42 m/s with the corresponding Mach number of 0.12. The experiments were conducted for 4 different swirl numbers (0, 0.2, 0.42 and 0.73) using swirl vanes at air inlet having angles of 0°, 15°, 30° and 45° respectively. Liquid to air momentum flux ratio (q) was varied from 5 to 25. High speed (@ 500 fps) images of the spray were captured and those images were processed using MATLAB to obtain the path of the spray at various momentum flux ratios. The results show interesting trends for the spray trajectory and the jet spread in swirling air flow. High swirling flows not only lead to spray with lower radial penetration due to sharp bending and disintegration of liquid jet, but also result in spray with high jet spread and spray area. Based on the results, correlations for the spray path have been proposed which incorporates the effects of the swirl number of the air flow.


Author(s):  
A. Montakhab

Because of its relatively high coolant temperature, the closed cycle gas turbine HTGR is well adapted to dry cooling and its waste heat can be rejected with relatively low cost. The preliminary design of natural-draft dry cooling towers for a 1200 MW(e) GT-HTGR is presented. The effects of air approach velocity, capacity rates of air and water mediums, and number of heat exchanger cross flow passes on salient tower and heat exchanger dimensions are studied. Optimum tower designs are achieved with three cross flow passes for the heat exchanger, resulting in a simultaneous minimization of tower height, heat exchanger surface area and circulating water pumping power. Four alternative tower designs are considered and their relative merits are compared. It is concluded that the 1200 MW(e) plant can be cooled by a single tower design which is well within the present state of the natural-draft dry cooling tower technology. In comparison, the fossil-fired or HTGR steam plants of the same output is shown to need three such towers.


Author(s):  
Tomomichi Nakamura ◽  
Hiroshi Haruguchi ◽  
Hiroyuki Nakajima ◽  
Toyohiro Sawada ◽  
Kozo Sugiyama

The importance of the in-flow oscillation of a single cylinder in cross-flow has been highlighted since an accident in a FBR-type reactor. In-flow oscillations have also been observed in tube arrays. This report is an experimental study on this phenomenon using totally nine cylinders in a water tunnel. Six cases, one single cylinder, two & three cylinders in parallel & in tandem, and a nine cylinder bundle, are examined. Every cylinder can move only in in-flow direction. The motion of cylinders is measured by the strain gages and by a high-speed digital video camera. The results are compared with the visualized vortex motion.


Sign in / Sign up

Export Citation Format

Share Document