scholarly journals Methodology to calculate the density of the magnetic field generated in overhead transmission lines in HVDC applying a two-dimensional analysis of parallel poles above ground level

Author(s):  
Jorge Luis AGUILAR-MARIN ◽  
Luis CISNEROS-VILLALOBOS ◽  
Jorge Gabriel PADILLA-CANTERO ◽  
Julio Cesar VERGARA-VÁZQUEZ

The growth in the demand for electricity has led to the development and application of technologies that make its means of transport more efficient. Thus, one of these options is the implementation of transmission lines in HVDC. One of important design parameters of these lines is to know their magnetic field distribution, when it is required to calculate it, there is no methodology that can be applied to HVDC transmission lines. The following article presents a methodology that allows obtaining the density of the magnetic field on the corridor of an overhead transmission line. A case study of a 500 kV bipolar line in HVDC is presented, the results obtained are compared using the commercial software Field and corona Effects (FACE), the results obtained are consistent with those obtained from the presented methodology. An analysis of the impact of the transmission line configuration on the magnetic field density is developed, defining the most efficient configuration.

2020 ◽  
Vol 10 (9) ◽  
pp. 3266 ◽  
Author(s):  
Ramūnas Deltuva ◽  
Robertas Lukočius

A high-voltage AC double-circuit 400 kV overhead power transmission line runs from the city of Elk (Poland) to the city of Alytus (Lithuania). This international 400 kV power transmission line is potentially one of the strongest magnetic field-generating sources in the area. This 400 kV voltage double-circuit overhead transmission line and its surroundings were analyzed using the mathematical analytical methods of superposition and reflections. This research paper includes the calculation of the numerical values of the magnetic field and its distribution. The research showed that the values of the magnetic field strength near the international 400 kV power transmission line exceed the threshold values permitted by relevant standards. This overhead power line is connected to the general (50 Hz) power system and generates a highly intense magnetic field. It is suggested that experimental trials should be undertaken in order to determine the maximum values of the magnetic field strength. For the purpose of mitigating these values, it is suggested that the height of the support bars should be increased or that any individual and commercial activities near the object under investigation should be restricted.


2020 ◽  
Vol 2020 (10) ◽  
pp. 4-11
Author(s):  
Victor Tikhomirov ◽  
Aleksandr Gorlenko ◽  
Stanislav Volohov ◽  
Mikhail Izmerov

The work purpose is the investigation of magnetic field impact upon properties of friction steel surfaces at fit stripping with tightness through manifested effects and their wear visually observed. On the spots of a real contact the magnetic field increases active centers, their amount and saturation with the time of dislocation outlet, and has an influence upon tribo-mating. The external electro-magnetic field promotes the increase of the number of active centers at the expense of dislocations outlet on the contact surface, and the increase of a physical contact area results in friction tie strengthening and growth of a friction factor. By the example of friction pairs of a spentonly unit in the suspension of coach cars there is given a substantiation of actuality and possibility for the creation of technical devices with the controlled factor of friction and the stability of effects achieved is also confirmed experimentally. Investigation methods: the fulfillment of laboratory physical experiments on the laboratory plant developed and patented on bush-rod samples inserted with the fit and tightness. The results of investigations and novelty: the impact of the magnetic field upon the value of a stripping force of a press fit with the guaranteed tightness is defined. Conclusion: there is a possibility to control a friction factor through the magnetic field impact upon a friction contact.


Author(s):  
N. B. Rubtsova ◽  
A. Y. Tokarskiy

The main problems of overhead and cable transmission lines with voltage >=110 kV electric and magnetic fields general public protection are presented. It is shown that it is necessary to develop regulatory requirements for these lines’ sanitary protection zones organization, taking into account the magnetic field component, because its possible health risk factor, up to carcinogenic.


2020 ◽  
Vol 30 (6) ◽  
pp. 353-361
Author(s):  
Rebecca S. Dewey ◽  
Rachel Gomez ◽  
Chris Degg ◽  
David M. Baguley ◽  
Paul M. Glover

The sensation of phantom motion or exhibition of bodily sway is often reported in the proximity of an MR scanner. It is proposed that the magnetic field stimulates the vestibular system. There are a number of possible mechanisms responsible, and the relative contributions of susceptibility on the otolithic receptors and the Lorentz force on the cupulae have not yet been explored. This exploratory study aims to investigate the impact of being in the proximity of a 7.0 T MR scanner. The modified clinical test of sensory interaction on balance (mCTSIB) was used to qualitatively ascertain whether or not healthy control subjects who passed the mCTSIB in normal conditions 1) experienced subjective sensations of dizziness, vertigo or of leaning or shifting in gravity when in the magnetic field and 2) exhibited visibly increased bodily sway whilst in the magnetic field compared to outside the magnetic field. Condition IV of the mCTSIB was video recorded outside and inside the magnetic field, providing a semi-quantitative measure of sway. For condition IV of the mCTSIB (visual and proprioceptive cues compromised), all seven locations/orientations around the scanner yielded significantly more sway than at baseline (p < 0.01 FDR). A Student’s t-test comparing the RMS velocity of a motion marker on the upper arm during mCTSIB condition IV showed a significant increase in the amount of motion exhibited in the field (T = 2.59; d.f. = 9; p = 0.029) compared to outside the field. This initial study using qualitative measures of sway demonstrates that there is evidence for MR-naïve individuals exhibiting greater sway while performing the mCTSIB in the magnetic field compared to outside the field. Directional polarity of sway was not significant. Future studies of vestibular stimulation by magnetic fields would benefit from the development of a sensitive, objective measure of balance function, which can be performed inside a magnetic field.


2012 ◽  
Vol 610-613 ◽  
pp. 2813-2818
Author(s):  
Xian Long Lu ◽  
Zeng Zhen Qian

This paper presents the concept and the fundamental issues and the development on the environmental geotechnology in transmission lines foundation engineering. Namely, environmental geotechnology and theory is to study the restriction effects of environment on the transmission line routes, foundation selection and reliability, to predict the results of transmission line foundation construction on the environment, and to study on countermeasures of environmental protection in transmission foundation engineering. And then, from the above three aspects, the design method combined strength and displacement for tower foundation, the selection on foundation types and technical scheme for transmission line tower, and the countermeasures for soil and water conservation, the author introduces the development and practice of environmental geotechnology for transmission lines foundation engineering in China.


2018 ◽  
Vol 145 ◽  
pp. 03004
Author(s):  
Polya Dobreva ◽  
Olga Nitcheva ◽  
Monio Kartalev

This paper presents a case study of the plasma parameters in the magnetosheath, based on THEMIS measurements. As a theoretical tool we apply the self-consistent magnetosheath-magnetosphere model. A specific aspect of the model is that the positions of the bow shock and the magnetopause are self-consistently determined. In the magnetosheath the distribution of the velocity, density and temperature is calculated, based on the gas-dynamic theory. The magnetosphere module allows for the calculation of the magnetopause currents, confining the magnetic field into an arbitrary non-axisymmetric magnetopause. The variant of the Tsyganenko magnetic field model is applied as an internal magnetic field model. As solar wind monitor we use measurements from the WIND spacecraft. The results show that the model quite well reproduces the values of the ion density and velocity in the magnetosheath. The simlicity of the model allows calulations to be perforemed on a personal computer, which is one of the mean advantages of our model.


2007 ◽  
Vol 25 (3) ◽  
pp. 785-799 ◽  
Author(s):  
A. Kis ◽  
M. Scholer ◽  
B. Klecker ◽  
H. Kucharek ◽  
E. A. Lucek ◽  
...  

Abstract. Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB) ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.


2020 ◽  
Vol 4 (2) ◽  
pp. 127-138
Author(s):  
Ismael Saeed ◽  
Kamal Sheikhyounis

The modeling and calculation of a single phase-to-earth fault of 6 to 35 kV have specific features when compared with circuits with higher nominal voltages. In this paper, a mathematical analysis and modeling of a 3-phase overhead transmission line with distributed parameters consisting of several nominal T-shaped, 3-phase links with concentrated parameters replaced by 1 nominal T-shaped link were carried out. Further analysis showed that not accounting for the distributed nature of the line parameters did not cause significant errors in the assessment of the maximum overvoltage in the arc suppression in single phase-to-earth faults, and that sufficient accuracy insures the representation of the line by only 1 nominal T-shaped, 3-phase link. Such a modeling technique makes it impossible to identify the location of single-phase faults, which is the property of higher harmonic amplification of individual frequencies. Chain equivalent schemas with constant parameters are valid for a single frequency, thereby providing an opportunity to study the nature of the wave process by the discrete selection of parameters. Next in the mathematical representation, we consider the overhead transmission lines as lines with distributed parameters.


Sign in / Sign up

Export Citation Format

Share Document