scholarly journals Aplikasi Penggunaan Serah Wangi Sebagai Bioaditif Alami untuk Karakterasi Unjuk Kerja dari Mesin Diesel

2019 ◽  
Vol 3 (1) ◽  
pp. 37
Author(s):  
Abdul Muhyi ◽  
Rico Aditia Prahmana ◽  
Devia G. C. Alfian ◽  
Dicky J. Silitonga ◽  
Didik Supriyadi

The consumption of diesel fuel in Indonesia is increasing every year, one way to overcome this problem is to use natural bioaditive in the form of essential oils found in Indonesia. Essential oils used in this study are fragrant lemongrass because fragrant lemongrass contains carboxylic compounds (-COOH) [1,2,3]. With the aim of improving engine performance and reducing fuel consumption. This research was conducted by mixing fragrant citronella oil with diesel oil with a percentage of 1%, 0.5% and 0.1% of the total volume. Diesel engines are operated with variations in loading 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800 and 2000 W at a constant engine speed of 1500 rpm. The variables measured and calculated in this experiment are power, torque, Break Mean Effective Pressure (BMEP), Specific Fuel Consumption (SFC). The results showed that adding citronella oil to diesel fuel with a percentage of 1%, 0.5% and 0.1% significantly reduced fuel consumption by 15.5%, 3.6% and 2.6% respectively. The maximum reduction in fuel consumption reaches 0.055 liters / hour at 200W loading with a bioaditive level of 0.1%. The next study planned is to mix clove oil and citronella oil as bioaditive so that it is expected to reduce fuel consumption and engine corrosion. Keywords: Diesel engine, bioaditive, fragrant citronella oil, performance of diesel engines, fuel consumption

2020 ◽  
Vol 4 (2) ◽  
pp. 82
Author(s):  
Rico Aditia Prahmana ◽  
Devia Gahana Cindi Alfian ◽  
Didik Supriyadi ◽  
Dicky Januarizky Silitonga ◽  
Abdul Muhyi

The increase in fuel prices makes the use of essential oils as a natural bio-additive in diesel engines much in demand. This is because essential oils are believed to have good content to improve engine performance and reduce fuel consumption. In this research, essential oils used are citronella oil because they contain carboxylic compounds (-COOH) and clove oil which has the advantage to prevent corrosion. The aim is to improve engine performance and reduce fuel consumption can also prevent corrosion. This research was conducted by mixing citronella oil and clove oil with diesel fuel with a percentage of 1%, 0.5%, and 0.1% of the total volume. The diesel engine is operated with a loading variation of 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, and 2000 W at a constant engine speed of 1500 rpm. The variables measured and calculated in this experiment are power, torque, Brake Mean Effective Pressure (BMEP), Specific Fuel Consumption (SFC). The results showed that the addition of citronella oil and clove oil to diesel fuel with a percentage of 0.1%, 0.5%, and 1% significantly reduced fuel consumption by 14.6%, 12.9%, and 18.3%, respectively. The maximum fuel reduction from mixed oils is only 0.086 liters/hour at 1000W loads with 1% bio-additives content.


Author(s):  
Agung Sudrajad ◽  
Fujita Hirotsugu ◽  
Ismail Ali ◽  
Mohd Hazmie Hamdan

Optimization of using waste plastic fuel on diesel engine was observed. The investigation experimental project was comparison between using waste plastic fuel and diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated reduce in engine CO2, NOx and SOx emission when using plastic fuel compared to base diesel oil with good in fuel consumption.


2014 ◽  
Vol 554 ◽  
pp. 520-525 ◽  
Author(s):  
Amir Khalid ◽  
Azim Mudin ◽  
M. Jaat ◽  
Norrizal Mustaffa ◽  
Bukhari Manshoor ◽  
...  

Biodiesel is the alternate fuel which is derived from renewable sources either is vegetable oils or animal fats. For that reason, the vehicle run by Bio-diesel Fuel (BDF) has been a potential option and the alternative sources of fuel are receiving a lot attention in the automotive industry. The use waste cooking oil (WCO) biodiesel as an alternative fuel in engines has advantages from both economic and the emissions of carbon monoxide (CO) and hydrocarbons (HC) in the exhaust gas. Purpose of this study is to investigate the effects of waste cooking oil blended fuel, engine speed and test load conditions on the fuel properties, combustion characteristics and engine performance. The engine speed was varied from 1500 to 3000 rpm, load test condition varied by dynapack chassis dynamometer in 0, 50 and 100% and blends of 5(WCO5), 10(WCO10) and 15vol%(WCO15) waste cooking oil with the diesel fuel. The results showed that the use of WCO as biodiesel results in a higher fuel consumption rate, especially at low engine speed and full load condition.


2005 ◽  
Vol 128 (4) ◽  
pp. 915-920 ◽  
Author(s):  
Ali Mohammadi ◽  
Masahiro Shioji ◽  
Takuji Ishiyama ◽  
Masato Kitazaki

Low-calorific gases with a small portion of hydrogen are produced in various chemical processes, such as gasification of solid wastes or biomass. The aim of this study is to clarify the efficient usage of these gases in diesel engines used for power generation. Effects of amount and composition of low-calorific gases on diesel engine performance and exhaust emissions were experimentally investigated adding hydrogen-nitrogen mixtures into the intake gas of a single-cylinder direct-injection diesel engine. The results indicate that optimal usage of low-calorific gases improves NOx and Smoke emissions with remarkable saving in diesel fuel consumption.


2021 ◽  
Vol 25 (1) ◽  
pp. 13-28
Author(s):  
Grzegorz Dzieniszewski ◽  
Maciej Kuboń ◽  
Miroslav Pristavka ◽  
Pavol Findura

Abstract A comparative analysis of performance of Diesel engines fuelled by diesel oil, methyl ester of rapeseed oil and raw rapeseed oil was performed. The analysis of external characteristics of engines powered by various fuel types was accepted for an assessment. Engine performance rates were analysed while attention was paid to power courses, moment, unit fuel consumption and hour fuel consumption, exhaust fumes temperature and exhaust smoke. Operation effectiveness of engines was assessed when they were fed with various fuel types and optimal proportions of fuel mixtures were indicated. Environmental aspects of powering the engines with traditional fuels and crop-based fuels were analysed. The total CO2 emission in the entire process of manufacturing and combustion of fuels was accepted as a criterion. A simplified economic analysis was performed in the aspect of the underlying purpose of using crop-based fuels for propulsion of piston engines. Conclusions and recommendations that indicate directions of development concerning the analysed issue were prepared.


2021 ◽  
Vol 6 (3) ◽  
pp. 469-490
Author(s):  
Muji Setiyo ◽  
Dori Yuvenda ◽  
Olusegun David Samuel

Currently, many countries are promoting B100 as the main fuel for diesel engines towards the transition to 100% renewable energy applications. However, due to its properties, B100 has both advantages and disadvantages to replace diesel oil. Therefore, a bibliometric analysis was carried out to evaluate the performance and emissions of a diesel engine with the B100 being tested on a multi-cylinder diesel engine for cars. Unfortunately, only 12 of the 127 selected articles are eligible to be reviewed in detail and none of them discusses all the key performance of diesel engines which include Brake Thermal Efficiency (BTE), Specific Fuel Consumption (SFC), Cylinder Pressure (CPs), Heat Release Rate (HRR), NOx, and smoke. Through data synthesis, we found that the use of B100 provides advantages in engine noise, thermal efficiency, specific fuel consumption, and emissions under certain engine loads. On the other hand, it also has the potential to result in poorer performance, if there is no modification to engine components and the addition of additives. As a recommendation, the results of this analysis provide a guide for further research to examine the use of B100 with all diesel engine performance variables. Research paths can be developed with the wider potential to provide new arguments on various diesel engine technologies, engine capacities, B100 raw materials, and test environments.


2011 ◽  
Vol 1 (2) ◽  
Author(s):  
Yesung Allo Padang

Experimental testing using coconut oil produced by dry method on engine has been conducted in the Laboratory of Energy Conversion, Mechanical Engineering, Mataram University. The purpose was to evaluate the effect of using this coconut oil on the engine performance. The oil was mixed with diesel oil in order to obtain biodiesel. There were four combinations of ratio diesel oil to coconut oil; namely 100% : 0% (mkp0%), 90%:10% (mkp10%), 80%:20% (mkp20%) and 70%:30% (mkp30%.). Mitsubishi L300 diesel engine was used in this experiment by variating engine speed 1000 rpm, 1050 rpm and 1100 rpm with torgue load at 1 kg. At engine speed of 1200 rpm the loads were varied as 1 kg, 1.5 kg and 2 kg. The result shows that by increasing the number of coconut oil in the mixture will reduce engine fuel consumption. Fuel consumption of the mixture will be better compare to the fuel consumption of pure diesel oil. Specific fuel consumption efective (SFCe) of coconut oil-diesel mixture at mkp 10%, 20% and 30% are lower than of pure diesel oil. The reduced SFCe are 1.45 %, 1.71% and 3.57 % at effective power 0.838 PS, 1.98%, 4.31% and 4.31% at effective power 1.257 PS and 1.22%, 3.92% and 7.12% at effective power 1.676 PS. By varying the engine speed, the result also shows that SFCe of the mixture is also lower than SFCe of pure diesel oil.


2020 ◽  
Vol 19 (3) ◽  
pp. 473-484
Author(s):  
Mina Tadros ◽  
Manuel Ventura ◽  
C. Guedes Soares

Abstract Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines. This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions. From that point, an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used. The variations of SOx emissions are computed in g/kW·h and in parts per million (ppm) as functions of the optimized parameters: brake specific fuel consumption and the amount of air-fuel ratio respectively. Then, a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load. These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.


Fuel ◽  
2018 ◽  
Vol 222 ◽  
pp. 718-732 ◽  
Author(s):  
Pierpaolo Napolitano ◽  
Chiara Guido ◽  
Carlo Beatrice ◽  
Leonardo Pellegrini

2011 ◽  
Vol 31 (5) ◽  
pp. 916-922 ◽  
Author(s):  
Gustavo H. Nietiedt ◽  
José F. Schlosser ◽  
Alexandre Russini ◽  
Ulisses G. Frantz ◽  
Rodrigo L. Ribas

Diesel fuel is used widely in Brazil and worldwide. On the other hand, the growing environmental awareness leads to a greater demand for renewable energy resources. Thus, this study aimed to evaluate the use of different blends of soybean (Glycine max) methyl biodiesel and diesel in an ignition compression engine with direct injection fuel. The tests were performed on an electric eddy current dynamometer, using the blends B10, B50 and B100, with 10; 50 e 100% of biodiesel, respectively, in comparison to the commercial diesel B5, with 5% of biodiesel added to the fossil diesel. The engine performance was analyzed trough the tractor power take off (PTO) for each fuel, and the best results obtained for the power and the specific fuel consumption, respectively, were: B5 (44.62 kW; 234.87 g kW-1 h-1); B10 (44.73 kW; 233.78 g kW-1 h-1); B50 (44.11 kW; 250.40 g kW-1 h-1) e B100 (43.40 kW; 263.63 g kW-1 h-1). The best performance occurred with the use of B5 and B10 fuel, without significant differences between these blends. The B100 fuel showed significant differences compared to the other fuels.


Sign in / Sign up

Export Citation Format

Share Document