Utilization of Low-Calorific Gaseous Fuel in a Direct-Injection Diesel Engine

2005 ◽  
Vol 128 (4) ◽  
pp. 915-920 ◽  
Author(s):  
Ali Mohammadi ◽  
Masahiro Shioji ◽  
Takuji Ishiyama ◽  
Masato Kitazaki

Low-calorific gases with a small portion of hydrogen are produced in various chemical processes, such as gasification of solid wastes or biomass. The aim of this study is to clarify the efficient usage of these gases in diesel engines used for power generation. Effects of amount and composition of low-calorific gases on diesel engine performance and exhaust emissions were experimentally investigated adding hydrogen-nitrogen mixtures into the intake gas of a single-cylinder direct-injection diesel engine. The results indicate that optimal usage of low-calorific gases improves NOx and Smoke emissions with remarkable saving in diesel fuel consumption.

2018 ◽  
Vol 49 ◽  
pp. 02010
Author(s):  
Syarifudin ◽  
Syaiful ◽  
Eflita Yohana

Diesel engines are widely used in industry, automotive, power generation due to better reliability and higher efficiency. However, diesel engines produce high smoke emissions. The main problem of diesel engine is actually the use of fossil fuels as a source of energy whose availability is diminishing. Therefore alternative fuels for diesel fuels such as jatropha and butanol are needed to reduce dependence on fossil fuels. In this study, the effect of butanol usage on fuel consumption and smoke emissions of direct injection diesel engine fueled by jatropha oil and diesel fuel with cold EGR system was investigated. The percentage of butanol was in the range of 5 to 15%, jatropha oil was in the range of 10 to 30% and the balance was diesel fuel. Cold EGR was varied through valve openings from 0 to 100% with 25% intervals. The experimental data shows that the BSFC value increases with increasing percentage of butanol. In addition, the use of EGR results in a higher increase of BSFC than that without EGR. While the addition of butanol into a blend of jatropha oil and diesel fuel causes a decrease in smoke emissions. The results also informed that the use of EGR in the same fuel blend led to increased smoke emissions.


Mechanika ◽  
2019 ◽  
Vol 25 (5) ◽  
pp. 363-369 ◽  
Author(s):  
ADNAN BERBER

In this work, the methanol is added to the diesel fuel in the volumetric proportions of 5%-%10-%15 to diminish negative environmental impacts of diesel engines. The diesel-methanol blends in the various proportions are tested in a single-cylinder direct-injection diesel engine. According to the test results, the addition of methanol to the diesel fuel causes a maximum decrease of 13.07 % in the engine torque, and a maximum decrease of 12.54 % in the specific fuel consumption. On the other hand, the exhaust emission results show that the values of CO and CO2 decrease 38.4 % and 5.04%. However, the increase of 3.66% in the exhaust gas temperature causes the increase of 17.1% in the NOx emission. Also, a significant decrease of 39.37% in the smoke opacity is observed compared to that of the diesel fuel. Although the addition of methanol to diesel fuel causes a slightly decrease in the engine performance, the diesel-methanol blends have a reasonable and considerable positive effect on environmental concerns of diesel engines.


2002 ◽  
Vol 3 (2) ◽  
pp. 69-79 ◽  
Author(s):  
M-S Lyu ◽  
B-S Shin

As Co2 emissions from vehicles are gaining global attention, the low fuel consuming powertrain is in much greater demand than before. Some alternatives are suggested but the high-speed direct injection (HSDI) diesel engine would be the most realistic solution. Vehicle simulation shows that a car with low fuel consumption can be realized by applying a 1–1.2 L high-speed direct injection diesel engine in vehicles weighing about 750 kg. Although the direct injection diesel engine has been researched for a long time, enhancement of mixing between air and fuel in a limited space makes it a challenging area to develop a small swept volume HSDI diesel engine. The authors are investigating small HSDI diesel engine combustion technologies in an effort to realize a low fuel consumption vehicle. The main objective in this study is to obtain a better understanding of the combustion-related parameters from such a small size HSDI diesel engine in order to improve engine performance.


2016 ◽  
Vol 22 (3) ◽  
pp. 616-621
Author(s):  
Doru Coşofreţ ◽  
Cătălin Popa ◽  
Marian Ristea

Abstract The formation of CO2 emissions is largely dependent on the carbon content of the fuel used in diesel engines and on the fuel consumption. The mixture of biodiesel in fossil fuels is in line with most of the research presented in the specialty literature, a method of reducing CO2 emissions from diesel engines. Due to these controversies on the obtained results, the research of the biodiesel effects blended with fossil fuels is still a matter of study. Therefore, a laboratory study has been conducted on a naturally aspirated 4-stroke diesel engine, using different mixtures (10, 15, 20, 25, 30, 40 and 50%) of diesel with biodiesel produced from oil rape. The results of the study revealed the fact that CO2 emissions of the blends used are lower than the same emissions produced when powering the engine with diesel fuel. Furthermore, of all blends used in the study, the 15% biodiesel mixture in diesel fuel was marked by a major decrease of CO2 emissions and of specific fuel consumption.


Author(s):  
Zhentao Liu ◽  
Jinlong Liu

Market globalization necessitates the development of heavy duty diesel engines that can operate at altitudes up to 5000 m without significant performance deterioration. But the current scenario is that existing studies on high altitude effects are still not sufficient or detailed enough to take effective measures. This study applied a single cylinder direct injection diesel engine with simulated boosting pressure to investigate the performance degradation at high altitude, with the aim of adding more knowledge to the literature. Such a research engine was conducted at constant speed and injection strategy but different ambient conditions from sea level to 5000 m in altitude. The results indicated the effects of altitude on engine combustion and performance can be summarized as two aspects. First comes the extended ignition delay at high altitude, which would raise the rate of pressure rise to a point that can exceed the maximum allowable limit and therefore shorten the engine lifespan. The other disadvantage of high-altitude operation is the reduced excess air ratio and gas density inside cylinder. Worsened spray formation and mixture preparation, together with insufficient and late oxidation, would result in reduced engine efficiency, increased emissions, and power loss. The combustion and performance deteriorations were noticeable when the engine was operated above 4000 m in altitude. All these findings support the need for further fundamental investigations of in-cylinder activities of diesel engines working at plateau regions.


Sign in / Sign up

Export Citation Format

Share Document