scholarly journals CRITICAL VALUE NOTIFICATION PROCESS IN THE HEMATOLOGY LABORATORY OF A TRAUMA CARE SET UP

2021 ◽  
Vol 06 (01) ◽  
pp. 11-16
Author(s):  
T Mukhopadhyay ◽  
A Subramanian ◽  
V Arya
Keyword(s):  
2016 ◽  
Vol 21 (2) ◽  
Author(s):  
Ahmad Solgi ◽  
Ramin Naghdi ◽  
Mehrdad Nikooy

An extensive field trial was set up to examine the influence of traffic intensity (5, 10, and 15 skidding cycles) (i.e. pass back and forth on the skid trail) and skid trail slope (0-10, 10-20, and > 20)% on soil compaction, forest floor removal, and rut depth after logging. The results showed that dry bulk density and rut depth increased with the increase of traffic frequency and slope, but floor coverage decreased. Within each traffic treatment soil compaction raised with the increase of skid trail slope, so that significant differences in dry bulk density were observed between slopes lower than 20% and those greater than 20%. Bulk density has become quite close to the critical value after 15 cycles. We observed soil rutting on the treatments started with 10 cycles. Soil disturbance increased significantly on slopes with less than 20% inclination with a dry bulk density of 1.157 g cm-3 after 5 cycles compared to 0.923 g cm-3 on slopes lower than 10%. In addition the litter mass on the treatments with 10 cycles and slopes greater than 20% (386.586 kg ha-1) was significantly lower (p < 0.05) than treatments with 15 cycles and slopes lower than 10% (545.382 kg ha-1). Data suggest that disturbance increased earlier in the steep treatments than in less sloping conditions. The dramatic increase of soil disturbance on treatments with slopes greater than 20% may be associated with increasing load on the rear axle combined with slipping on steep slope trail.Efecto del arrastre en la compactación y remoción de suelo y en la formación de surcosSe realizó un extenso estudio de campo para examinar la influencia de la intensidad de tráfico (5, 10 y 15 ciclos de arrastre) (es decir, pasar de ida y vuelta en la pista de arrastre) y de la pendiente del terreno de arrastre (0-10, 10-20 y más de 20)% en la compactación del suelo, remoción suelo del bosque y la profundidad de la huella después de la tala. Los resultados mostraron que la densidad de masa seca y la profundidad de las raíces se incrementan conforme lo hacen la frecuencia del tráfico y la pendiente y que la cobertura de suelo disminuyó. Dentro de cada tratamiento de tráfico, la compactación del suelo aumentó con el incremento de la pendiente del terreno, se observaron diferencias significativas en la densidad aparente seca entre la pendiente menor a 20% y la mayor a 20%. La densidad aparente se acerca a su valor crítico después de 15 ciclos. Se observó la formación de surcos en el suelo en los tratamientos de 10 ciclos. La perturbación del suelo aumentó significativamente en las pendientes con más de 20% de inclinación, con una densidad seca aparente de 1,157 g cm-3 después de 5 ciclos en comparación con 0,923 g cm-3 en pendientes menores a 10%. Se observó que la masa de desechos vegetales (hojarasca) en el suelo en los tratamientos con 10 ciclos y laderas de más de 20% (386.586 kg ha-1) fue significativamente más baja (p <0,05) que en los tratamientos con 15 ciclos y laderas de menos de 10% (545,382 kg ha-1). Los datos sugieren que la perturbación se incrementa primero en los terrenos empinados que en aquellos con menor inclinación. El considerable aumento de la perturbación del suelo en los tratamientos con pendientes de más 20% puede estar asociado con el aumento de la carga en el eje trasero combinado con el deslizamiento sobre el terreno empinado.


It is well known that the so-called "oxygen electrode" does not behave in a thermodynamically reversible manner. The decomposition voltage of water has been calculated thermodynamically from various calorimetric and solubility data by Lewis, Nernst and von Wartenberg, Brönsted and Lewis and Randall. The final critical value given by the last-named authors is 1.227 volt at 25ºC., which should therefore be the e. m. f. of a cell consisting of a reversible hydrogen electrode and a reversible oxygen electrode immersed in the same electrolyte, both gases being at 760 mm. pressure. In practice this value has never been obtained. Smale found that the e. m. f. of the hydrogen-oxygen cell, though independent of the p H of the electrolyte, was only 1.07-1.08 volt. Wilsmore obtained a value of 1.07 volt, rising to 1.12 volt if the cell were allowed to stand for stand for some days, while a similar result, 1.06 volt, was obtained by Crotogino. More recently, Richards has reported 0.979 volt, and Furman also obtains a value of about 0.98 volt. Since it is well established that the hydrogen electrode bahaves in a perfectly reversible manner in accord with thermodynamic laws, the discrepancy between the "theoretical" and experimental e. m. f. of the hydrogen-oxygen cell must have its origin in the oxygen electrode. It is in fact experimentally found that oxygen electrodes, whether set up with bright or plantinized plantium, ( a ) tend to be irreproducible, ( b ) do not obey the thermodynamic relation between electrode potential and partial pressure of oxygen, and ( c ) are readily polarized even by minute currents, thus failing to conform with any of the criteria of reversibility.


1969 ◽  
Vol 36 (3) ◽  
pp. 579-587 ◽  
Author(s):  
F. Yin ◽  
Y. C. Fung

Peristaltic pumping in a circular cylindrical tube is analyzed. The problem is a viscous fluid flow induced by an axisymmetric traveling sinusoidal wave of moderate amplitude imposed on the wall of a flexible tube. A perturbation method of solution is sought. The amplitude ratio (wave amplitude/tube radius) is chosen as a parameter. The nonlinear convective acceleration terms in the Navier-Stokes equation is retained. The governing equations are developed up to the second order in the amplitude ratio. The zeroth-order terms yield the classical Poiseuille flow, the first-order terms yield the Sommerfeld-Orr equation. If there is no pressure gradient in the absence of wall motion, the mean flow and mean pressure gradient (averaged over time) are both shown to be proportional to the square of the amplitude ratio. Numerical results are obtained for this simple case by approximating a complicated group of products of Bessel functions by a polynomial. The results show that the mean axial velocity is dominated by two terms. One term corresponds to a parabolic profile which is due to the mean pressure gradient set up by the wall motion. The other term arises from satisfying the no-slip boundary condition at the wavy wall rather than at the mean position of the wall. In addition, there are perturbations arising from the convective acceleration. If the mean pressure gradient set up by the wall motion itself reaches a certain positive critical value, the velocity becomes zero on the axis. Values of the mean pressure gradient larger than the critical value will induce backward flow in the fluid. Values of the critical pressure gradient for several cases are presented.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
O.L. Krivanek ◽  
J. TaftØ

It is well known that a standing electron wavefield can be set up in a crystal such that its intensity peaks at the atomic sites or between the sites or in the case of more complex crystal, at one or another type of a site. The effect is usually referred to as channelling but this term is not entirely appropriate; by analogy with the more established particle channelling, electrons would have to be described as channelling either through the channels or through the channel walls, depending on the diffraction conditions.


Author(s):  
David C. Joy ◽  
Dennis M. Maher

High-resolution images of the surface topography of solid specimens can be obtained using the low-loss technique of Wells. If the specimen is placed inside a lens of the condenser/objective type, then it has been shown that the lens itself can be used to collect and filter the low-loss electrons. Since the probeforming lenses in TEM instruments fitted with scanning attachments are of this type, low-loss imaging should be possible.High-resolution, low-loss images have been obtained in a JEOL JEM 100B fitted with a scanning attachment and a thermal, fieldemission gun. No modifications were made to the instrument, but a wedge-shaped, specimen holder was made to fit the side-entry, goniometer stage. Thus the specimen is oriented initially at a glancing angle of about 30° to the beam direction. The instrument is set up in the conventional manner for STEM operation with all the lenses, including the projector, excited.


Author(s):  
T.S. Savage ◽  
R. Ai ◽  
D. Dunn ◽  
L.D. Marks

The use of lasers for surface annealing, heating and/or damage has become a routine practice in the study of materials. Lasers have been closely looked at as an annealing technique for silicon and other semiconductors. They allow for local heating from a beam which can be focused and tuned to different wavelengths for specific tasks. Pulsed dye lasers allow for short, quick bursts which can allow the sample to be rapidly heated and quenched. This short, rapid heating period may be important for cases where diffusion of impurities or dopants may not be desirable.At Northwestern University, a Candela SLL - 250 pulsed dye laser, with a maximum power of 1 Joule/pulse over 350 - 400 nanoseconds, has been set up in conjunction with a Hitachi UHV-H9000 transmission electron microscope. The laser beam is introduced into the surface science chamber through a series of mirrors, a focusing lens and a six inch quartz window.


Author(s):  
K.-H. Herrmann ◽  
E. Reuber ◽  
P. Schiske

Aposteriori deblurring of high resolution electron micrographs of weak phase objects can be performed by holographic filters [1,2] which are arranged in the Fourier domain of a light-optical reconstruction set-up. According to the diffraction efficiency and the lateral position of the grating structure, the filters permit adjustment of the amplitudes and phases of the spatial frequencies in the image which is obtained in the first diffraction order.In the case of bright field imaging with axial illumination, the Contrast Transfer Functions (CTF) are oscillating, but real. For different imageforming conditions and several signal-to-noise ratios an extensive set of Wiener-filters should be available. A simple method of producing such filters by only photographic and mechanical means will be described here.A transparent master grating with 6.25 lines/mm and 160 mm diameter was produced by a high precision computer plotter. It is photographed through a rotating mask, plotted by a standard plotter.


Author(s):  
Vijay Krishnamurthi ◽  
Brent Bailey ◽  
Frederick Lanni

Excitation field synthesis (EFS) refers to the use of an interference optical system in a direct-imaging microscope to improve 3D resolution by axially-selective excitation of fluorescence within a specimen. The excitation field can be thought of as a weighting factor for the point-spread function (PSF) of the microscope, so that the optical transfer function (OTF) gets expanded by convolution with the Fourier transform of the field intensity. The simplest EFS system is the standing-wave fluorescence microscope, in which an axially-periodic excitation field is set up through the specimen by interference of a pair of collimated, coherent, s-polarized beams that enter the specimen from opposite sides at matching angles. In this case, spatial information about the object is recovered in the central OTF passband, plus two symmetric, axially-shifted sidebands. Gaps between these bands represent "lost" information about the 3D structure of the object. Because the sideband shift is equal to the spatial frequency of the standing-wave (SW) field, more complete recovery of information is possible by superposition of fields having different periods. When all of the fields have an antinode at a common plane (set to be coincident with the in-focus plane), the "synthesized" field is peaked in a narrow infocus zone.


Sign in / Sign up

Export Citation Format

Share Document