Effect of process variables on the properties of dual-core yarns containing wool/elastane

2018 ◽  
Vol 69 (05) ◽  
pp. 352-356 ◽  
Author(s):  
TURKSOY HUSEYIN GAZI ◽  
YILDIRIM NIDA

The denim, having a large customer base irrelevant of age, gender and social status limitation, has been one of the most important products for thegarment sector. Denim fabric demand has diversified with the changing consumer’s sense of life day by day. The denim manufacturers develop alternative production techniques and materials by turning towards new researches in order to adapt to consumer demands. One of the alternative materials, which are used in denim fabric structure, is the dual-core yarns. The dual-core yarn is manufactured through the modified ring-spinning machine in order to benefit at the same time from the properties of two core components. In this study the influence of some production parameters such as twist level, wool draft and elastane draft on the properties of dual-core yarns containing wool/elastane is investigated.The results indicated that the twist level is significantly effective parameter for the unevenness, hairiness, tenacity and elongation values of dual-core yarns. In addition, wool draft is significantly effective parameter for hairiness and breaking elongation values. It was also observed that variation of elastane draft level affects tenacity and elongation values of dual-core yarns.

2011 ◽  
Vol 332-334 ◽  
pp. 743-746
Author(s):  
Cheng Liang Deng ◽  
Zhao Qun Du ◽  
Wei Dong Yu

A new spinning method was presented to spin three-axial stainless steel filament wrapped yarn by modified ring-spinning, where the stainless steel filament was set as the core yarn and the nylon filament for decoration wrapping the stainless steel filament in the fields of the fabric for Shielding application. A set of process parameters was obtained by the ring spinning frame improvement and spinning process optimization, which realized to spin nylon filament wrapped stainless steel filament yarn. Moreover, the structure, and tensile mechanical properties were measured on the wrapped yarns. The results show that the process can spin stainless steel wire wrapped yarn and acquire the excellent performance of the yarn.


1997 ◽  
Vol 67 (3) ◽  
pp. 217-223 ◽  
Author(s):  
A. P. S. Sawhney ◽  
L. B. Kimmel

With the objective of boosting ring spinning productivity, a new tandem spinning system combining air-jet and ring spinning technologies in continuous tandem is investigated. In this “air-plus-ring” tandem spinning system, a drafted roving strand as it emerges from the front roller nip feeds into a single- or dual-jet air nozzle where it is subjected to a vortex of compressed air, producing a pneumatically entangled, false-twisted, partially strengthened strand. This so-called prefabricated, air-bolstered strand continuously feeds into a standard ring spinning zone and is ultimately spun into a novel, single-component yarn. By spinning a few cotton and cotton-blend yarns with the lowest practical twist levels possible on both the tandem and conventional ring spinning systems, we show that a tandem spun yarn can be produced with a relatively lower (true ring) twist level than a pure ring spun yarn. To an extent, the tandem spinning's air-bolstering action reinforces the drafted fibrous strand, contributing to yarn formation and hence character. Since ring spinning productivity is inversely proportional to yarn twist level, the relatively lower twist level required in tandem spinning allows a proportionately higher yarn production speed (in some cases, up to 50% faster than the conventional ring spinning), while maintaining spindle speed at the traditional, optimum level imposed by the limiting traveler speed. Tandem spun yarns, however, are somewhat different from, and generally weaker than, conventional ring spun yarns. This paper briefly describes a prototype of the new tandem spinning system developed on a laboratory Spintester, and shows spinning parameters and properties of a few yarns produced on both the tandem arid conventional ring spinning systems, each employing the traditional (maximum) optimum spindle speed of 10,000 rpm for a given 5.0 cm (2 inch) diameter ring.


2019 ◽  
Vol 2019 ◽  
pp. 125-131
Author(s):  
Münevver ERTEK AVCI ◽  
Esin SARIOĞLU ◽  
Gizem KARAKAN GÜNAYDIN

Denim fabrics which are highly demanded products among the world have high consumption rate in the textile market. Those fabrics may be utilized for different purposes. Durability, elasticity, wearing resistance are the important expected properties from denim fabrics. Tearing resistance of denim fabrics in use is another parameter that should be considered. This study includes the investigation of tearing properties of denim fabrics produced from single core (Polyethylene terephthalate/Polytrimethylene terephthalate (PET/PTT) bicomponent filament and elastane) and dual core (PET/PTT+elastane feeding simultaneously) spun yarns utilized as weft yarns. Denim fabrics with different layout of these weft yarns with uncovered PET/PTT bicomponent filament were produced in order to compare the tearing strength properties in warp and weft wise. Results revealed that highest tearing strength of weft wise was obtained from denim fabrics at 2F:2CY layout where two uncovered PET/PTT bicomponent filament and two PET/PTT bicomponent filament+elastane dual core-spun yarn were used consecutively in the layouts. The lowest tearing strength was found among the denim fabrics at 1F:6CY layout where one uncovered PET/PTT bicomponent filament and six PET/PTT bicomponent filament+elastane dual core-spun yarns were used consecutively in the layouts. According to statistical evaluation; Weft yarn type, weft yarn layout and their interaction in the fabric were found to having significant effects on tearing strength for both warp and weft direction of denim fabric at significance level of 0.05.


2018 ◽  
Vol 26 (3(129)) ◽  
pp. 46-51
Author(s):  
Sait Yılönü ◽  
Belkıs Zervent Ünal

The purpose of this study was to investigate the effects of core-spun yarn on the quick-dry property of towels. This study focused on five different raw materials (modal, cotton, polyester, bamboo, viscose) which are the most frequently used in towel production. Seven different core yarns and five different conventional yarns were produced with these fibres on a ring spinning machine. These yarns were used in the weft direction of the towels. Samples produced with the same ground and pile warp yarns were subjected to constant dyeing conditions. All samples were tested for strength, softness, hydrophilicity and quick drying. As a result, polyester core yarn on the towels did not negatively affect basic properties such as water absorbency, softness and strength. However, the usage of polyester core yarns provided better quick dry properties than that of conventional yarns.


1992 ◽  
Vol 62 (2) ◽  
pp. 67-73 ◽  
Author(s):  
A. P. S. Sawhney ◽  
G. F. Ruppenicker ◽  
L. B. Kimmel ◽  
K. Q. Robert

In recent years, we have been reporting our research on composite yarns of mostly cotton content produced on a modified ring spinning system. Recently, we reported an improved method of producing an all staple-core spun yarn, and we have applied the same method to filament-core spinning, obtaining a yarn of greatly improved quality. The new filament-core yarn has almost total core coverage, does not strip, and is about 10% stronger (probably due to its improved yarn structure) than a conventional filament-core yarn. This paper briefly describes the new and conventional core spinning methods and evaluates nylon filament-core/cotton-wrap yarns produced with them. There is also a comparison of the cover factor, strip resistance, and microscopic cross sections of a few other core yarns (with Kevlar, fiberglass, and polyester cores). A significant improvement in the cover factor of the new yarn suggests that it may be very useful for sewing threads; ropes; twines; cables; special military, industrial, and surgical fabrics; and other textiles in which the high strength, durability, and a 100% cotton surface (for ease of finishing or coating) are important.


2017 ◽  
Vol 88 (9) ◽  
pp. 1065-1076 ◽  
Author(s):  
Tao Hua ◽  
Ngo S Wong ◽  
Wai M Tang

This paper presents a development of elastic core-spun yarn containing a mix of spandex and polyethylene terephthalate/polytrimethylene terephthalate (PET/PTT) bi-component filament as core to obtain better yarn properties, especially for elastic property. Eight types of core-spun yarns, consisting of different core components with various values of linear density and covered with cotton fibers, were produced using a modified ring-spinning machine with a core spinning attachment. The influences of core components, linear density, and draw ratio of spandex on yarn structure and properties were investigated. The experimental results demonstrate that core-spun yarns containing a mix of spandex and PET/PTT bi-component filament have much lower yarn stress decay as well as lower hairiness and CVm value of evenness compared to the yarns using only spandex. For the yarns containing a mix of spandex and PET/PTT bi-component filament, the yarns containing 70 denier spandex have higher elongation and stress decay compared to the yarns containing 40 denier spandex. The test results show that the elongation of yarns containing a mix of spandex and PET/PTT bi-component filament increases with the increase of the draw ratio of spandex. The stress decay of yarns containing a mix of 70 denier spandex and PET/PTT filament shows a similar trend to the elongation. Moreover, the yarn samples containing a mix of spandex and PET/PTT filament as core exhibit good yarn evenness, with very few thick places and neps, as well as low yarn hairiness.


Author(s):  
Md. Khalilur Rahman Khan ◽  
◽  
Abu Bakr Siddique ◽  
Hosne Ara Begum ◽  
◽  
...  

The mechanical behaviour of auxetic materials and structures is the most distinctive characteristic, which differs from that of conventional engineering materials due to the negative Poisson’s ratio. Auxetic materials have the fascinating feature of widening when stretched and contracting when compressed. In recent times, the research of auxetic materials based on textile structures has received a lot of interest. Auxetic effect development at the yarn phase is a new and exciting field of study. Many researchers already developed different types of auxetic yarns, such as the helical auxetic yarn, the plied auxetic yarn, the semi-auxetic yarn etc. The helical auxetic yarn (HAY) is the most commonly mentioned auxetic yarn. It is made up of a rigid wrap and an elastic core yarn. However, it is interesting that auxetic yarns can be produced from conventional non-auxetic fibres through the conventional spinning system as well. The helical auxetic yarn is a new type of yarn with a wide variety of possible applications. Moreover, pore-opening characteristics of auxetic yarns make it a potential candidate in the fields of technical textiles, such as medical textiles, filter application, protective textiles etc. Fabrication of auxetic textiles by utilizing auxetic yarns through simple weaving and knitting technology opens the door to new applications. The aim of this paper is to address the fundamentals of auxetic yarns, such as structure, shortcomings, production techniques, as well as the influencing process parameters. From various research works, it is evident that the wrap helical angle, the core/wrap diameter ratio, and the initial moduli of wrap component are the most vital processing parameters during the production of auxetic yarns. Finally, some potential application areas and challenges of auxetic yarns are also addressed briefly in this paper.


2019 ◽  
Vol 14 ◽  
pp. 155892501983781 ◽  
Author(s):  
Esin Sarıoğlu ◽  
Osman Babaarslan

In this article, porosity and air permeability of denim fabric produced from filament core-spun yarns with different filament fineness and yarn linear density were demonstrated. For this purpose, 110 dtex drawn textured polyester filaments with conventional, fine, and micro finenesses were used as core part, and combed cotton fiber was used as sheath part to obtain core-spun yarns with four different yarn linear density on a modified ring spinning system with the same spinning parameters. Besides the production of core-spun yarns, 100% cotton ring-spun yarns were produced as control group at the same conditions for each yarn linear density, as well. To evaluate the effect of filament fineness and yarn linear density on air permeability and total porosity, denim fabrics were obtained by using 24 yarn samples as weft at the same cover factor with four determined weft densities. Results showed that filament fineness and yarn linear density have a significant effect on total porosity and air permeability at a significance level of 0.05. In addition, high correlation (79.4%) between air permeability and total porosity of denim fabric samples was observed at a significance level of 0.01.


2021 ◽  
Vol 16 ◽  
pp. 155892502110591
Author(s):  
Osman Babaarslan ◽  
Md Abul Shahid ◽  
Fatma B Doğan

In recent decades, consumer expectations and behavior have altered, focusing on more comfortable, well-fitting clothes. Wearing a slim-fitting garment helps to move more freely. Different elastomeric polymers are being introduced as a core constituent of the yarn to make denim fabric more comfortable during movement. The use of elastic material ensures that the material is stretchable and recoverable. The performance of several elastomeric hybrid yarns has been investigated in the first section of this study. Here, polyethylene terephthalate/polytrimethylene terephthalate (PET/PTT (T400®)), polytrimethylene terephthalate (PTT (Solotex®)), polybutylene terephthalate (PBT), and Lycra® (elastane) were used as the core component of the core and dual core-spun yarns. After that, 3/1 Z twill denim fabrics were made with these as weft yarns, and the fabric’s performance was assessed. It is found that dual core-spun yarns were shown to have lower strength than core-spun yarns, while it had a higher elongation value. PTT/PBT dual core-spun yarn had less unevenness and hairiness than yarn made solely of elastane. PBT in the core of the weft yarns provided strong strength, dimensional change, and stiffness qualities in the fabric. In contrast, elastane in the core of the weft yarns provided good elastic performance. Yarn and fabric performance for the hybrid yarns were statistically significant at a significance level of 0.05.


2011 ◽  
Vol 332-334 ◽  
pp. 412-415 ◽  
Author(s):  
Jian Kun Wang ◽  
Xu Zhang ◽  
Ming Ming Xu

Alginate fibres are difficult to spin on the traditional ring spinning machine. Friction core-spun yarn which took alginate fibers as main wrapped fibers and cotton yarn as core yarn were developed on DREF-Ⅲ. The influence of main spinning technical parameters, such as spinning speed, friction roller speed and core yarn percentage, on the yarn performances was studied by means of orthogonal experiment and the optimized technical was put forward. The results showed that the overall performance of the core-spun yarn would be better as spinning speed of 100 m/min, friction roller speed of 4000r/min, core yarn percentage of 50% respectively.


Sign in / Sign up

Export Citation Format

Share Document