scholarly journals EFFECT OF RAPID THERMAL TREATMENT CONDITIONS ON ELECTROPHYSICAL PROPERTIES OF CROMIUM THIN FILMS ON SILICON

Doklady BGUIR ◽  
2019 ◽  
pp. 157-164 ◽  
Author(s):  
J. A. Solovjov ◽  
V. A. Pilipenko

Present paper is devoted the determination of the effect of the temperature of the process of rapid thermal treatment of chromium films on n-type conductivity silicon on their resistivity and contact properties of the interface. Chromium films of about 30 nm thickness were deposited by magnetron sputtering onto the surface of silicon substrates having a resistivity of 0.58 to 0.53 ohms×cm. The rapid thermal treatment was carried out in a heat balance mode by irradiating the back side of the substrates with non-coherent light flux in nitrogen ambient for 7 seconds. Quartz halogen incandescent lamps were used as the heating source. The temperature of the rapid thermal process ranged from 200 to 550 °C. The thickness of the chromium films was determined by raster electron microscopy. The surface resistance of the samples was measured by a four- probe method. The Schottky barrier height and the ideality factor were determined from I-V plots. It is shown that at the temperature of the rapid thermal process 400 °C a layer of chromium disilicide is formed, causing a sharp increase in the resistivity of chromium films to 1.2 mOhm×cm and the height of the Schottky barrier to 0.6 V. When the temperature of the rapid thermal process is further increased to 550 °C, the resistivity increases monotonically to 4.0 mOhm×cm due to the increase in the width of the interstitial boundaries increasing the scattering of charge carriers in the CrSi2 layers. It has also been shown that rapid thermal treatment of the Cr/Si structure at a temperature of 450–500 °C enables to obtain rectifying contacts with a barrier height of 0.615 V and an ideality factor of 1.1. The results obtained can be used in the technology of integrated electronics products containing Schottky contacts as well as thin film resistors.

Doklady BGUIR ◽  
2020 ◽  
pp. 81-88
Author(s):  
Ja. A. Solovjov ◽  
V. A. Pilipenko

Present work is devoted to determination the regularity of change of specific resistance and Schottky barrier height of nickel films on n-type silicon (111) at their rapid thermal treatment in the temperatures range from 200 to 550 °C. Nickel films of about 60 nm thickness were deposited by magnetron sputtering onto the silicon substrates having a resistivity of 0.58 to 0.53 Ohms×cm. The rapid thermal treatment was carried out in the range of 200 to 550 °C under heat balance mode by irradiating the backside of the substrates with non-coherent light flux in nitrogen ambient for 7 seconds. The thickness of the nickel films was determined by scanning electron microscopy. The sheet resistance of the samples was measured by a four-probe method. The Schottky barrier height was determined from I-V plots. It is shown that at a temperatureы of rapid thermal treatment of Ni/n-Si (111) 200–250 °C nickel will be transformed to Ni2Si, increasing in thickness by 1.15–1.33 times, specific resistance increases to 26–30 μOhm×cm, and Schottky barrier height decreases from 0.66 to 0.6 V. At a rapid thermal treatment temperature of 300°C the initial nickel film thickness increases by 1.93 times, the resistivity and Schottky barrier height decrease to 26–30 μOhm×cm and 0.59 V respectively due to the conversion of the Ni2Si into NiSi and the fixation of the barrier height by surface states at the silicidesilicon interface. Rapid thermal treatment of 350–550 °C transforms the original nickel film into NiSi, increases its thickness by 2.26–2.67 times, reduces its resistivity to 15–18 μOhm×cm and increases the Schottky barrier height to 0.62–0.64 V. The minimum defects and better reproducibility of electrophysical properties are characterized by NiSi films formed by rapid thermal treatment of nickel films on n-type silicon at a temperature of 400–450 °C. The results obtained can be used in the technology of integrated electronics products containing rectifying contacts.


2008 ◽  
Vol 600-603 ◽  
pp. 1341-1344 ◽  
Author(s):  
Fabrizio Roccaforte ◽  
Ferdinando Iucolano ◽  
Filippo Giannazzo ◽  
Salvatore di Franco ◽  
Valeria Puglisi ◽  
...  

In this work, the electrical properties of Pt/GaN Schottky contacts were studied. The temperature dependence of the barrier height and ideality factor, and the low experimental value of the Richardson’s constant, were discussed considering the formation of an inhomogenous Schottky barrier. Local current-voltage measurements on Pt/GaN contact, performed with a conductive atomic force microscope, demonstrated a Gaussian distribution of the local barrier height values and allowed to monitor the degree of inhomogeneity of the barrier. The presence of defects, terminating on the bare GaN surface, was correlated with the electrical behavior of the inhomogeneous barrier.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 636
Author(s):  
Mehadi Hasan Ziko ◽  
Ants Koel ◽  
Toomas Rang ◽  
Muhammad Haroon Rashid

The diffusion welding (DW) is a comprehensive mechanism that can be extensively used to develop silicon carbide (SiC) Schottky rectifiers as a cheaper alternative to existing mainstream contact forming technologies. In this work, the Schottky barrier diode (SBD) fabricated by depositing Al-Foil on the p-type 4H-SiC substrate with a novel technology; DW. The electrical properties of physically fabricated Al-Foil/4H-SiC SBD have been investigated. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics based on the thermionic emission model in the temperature range (300 K–450 K) are investigated. It has been found that the ideality factor and barrier heights of identically manufactured Al-Foil/p-type-4H-SiC SBDs showing distinct deviation in their electrical characteristics. An improvement in the ideality factor of Al-Foil/p-type-4H-SiC SBD has been noticed with an increase in temperature. An increase in barrier height in fabricated SBD is also observed with an increase in temperature. We also found that these increases in barrier height, improve ideality factors and abnormalities in their electrical characteristics are due to structural defects initiation, discrete energy level formation, interfacial native oxide layer formation, inhomogenous doping profile distribution and tunneling current formation at the SiC sufaces.


2012 ◽  
Vol 90 (1) ◽  
pp. 73-81 ◽  
Author(s):  
V. Lakshmi Devi ◽  
I. Jyothi ◽  
V. Rajagopal Reddy

In this work, we have investigated the electrical characteristics of Au–Cu–n-InP Schottky contacts by current–voltage (I–V) and capacitance–voltage (C–V) measurements in the temperature range 260–420 K in steps of 20 K. The diode parameters, such as the ideality factor, n, and zero-bias barrier height, Φb0, have been found to be strongly temperature dependent. It has been found that the zero-bias barrier height, Φb0(I–V), increases and the ideality factor, n, decreases with an increase in temperature. The forward I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the assumption of gaussian distribution of barrier heights, due to barrier inhomogeneities that prevail at the metal–semiconductor interface. The zero-bias barrier height Φb0 versus 1/2kT plot has been drawn to obtain the evidence of a gaussian distribution of the barrier heights. The corresponding values are Φb0 = 1.16 eV and σ0 = 159 meV for the mean barrier height and standard deviation, respectively. The modified Richardson plot has given mean barrier height, Φb0, and Richardson constant, A**, as 1.15 eV and 7.34 Acm−2K−2, respectively, which is close to the theoretical value of 9.4 Acm−2K−2. Barrier heights obtained from C–V measurements are higher than those obtained from I–V measurements. This inconsistency between Schottky barrier heights (SBHs) obtained from I–V and C–V measurements was also interpreted. The temperature dependence of the I–V characteristics of the Au–Cu–n-InP Schottky diode has been explained on the basis of TE mechanism with gaussian distribution of the SBHs.


1993 ◽  
Vol 318 ◽  
Author(s):  
C-P. Chen ◽  
Y. A. Chang ◽  
T.F. Kuech

ABSTRACTThermally stable Al/n-GaAs Schottky contacts, up to annealing temperature at 500 °C for 20 seconds, have been realized by sputter deposition from an Al target to (100) n-GaAs at a base pressure ∼2×10−7 Torr. The Schottky barrier height was 0.75 eV (0.9 eV) when using the I-V (C-V) method with an ideality factor of 1.09 for the as-deposited samples. The Schottky barrier height increased to 0.97 eV (1.06 eV) with an ideality factor of 1.07 after annealing at 400 °C for 20 seconds. This barrier height, 0.97 eV, is the highest value reported for Al/n-GaAs diodes. The interfacial stability between Al and GaAs has been examined by cross section transmission electron microscopy. A (200) dark field cross section transmission electron microscopy image of the contact after annealing at 600 °C showed that the (Ga,Al)As phase formed at the interface and the enhancement of the Schottky barrier height was due to the formation of this phase.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 199-202 ◽  
Author(s):  
Ahmet Faruk Ozdemir ◽  
Adnan Calik ◽  
Guven Cankaya ◽  
Osman Sahin ◽  
Nazim Ucar

Au/n-GaAs Schottky barrier diodes (SBDs) have been fabricated. The effect of indentation on Schottky diode parameters such as Schottky barrier height (φb) and ideality factor (n) was studied by current-voltage (I-V) measurements. The method used for indentation was the Vickers microhardness test at room temperature. The experimental results showed that the I-V characteristics move to lower currents due to an increase of φb with increasing indentation weight, while contacts showed a nonideal diode behaviour.


2011 ◽  
Vol 1406 ◽  
Author(s):  
Cleber A. Amorim ◽  
Olivia M. Berengue ◽  
Luana Araújo ◽  
Edson R. Leite ◽  
Adenilson J. Chiquito

ABSTRACTIn this work, we studied metal/SnO2 junctions using transport properties. Parameters such as barrier height, ideality factor and series resistance were estimated at different temperatures. Schottky barrier height showed a small deviation of the theoretical value mainly because the barrier was considered fixed as described by ideal thermionic emission-diffusion model. These deviations have been explained by assuming the presence of barrier height inhomogeneities. Such assumption can also explain the high ideality factor as well as the Schottky barrier height and ideality factor dependence on temperature.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 283
Author(s):  
Dong-Hyeon Kim ◽  
Michael A. Schweitz ◽  
Sang-Mo Koo

It is shown in this work that annealing of Schottky barrier diodes (SBDs) in the form of Ni/AlN/SiC heterojunction devices in an atmosphere of nitrogen and oxygen leads to a significant improvement in the electrical properties of the structures. Compared to the non-annealed device, the on/off ratio of the annealed SBD devices increased by approximately 100 times. The ideality factor, derived from the current-voltage (IV) characterization, decreased by a factor of ~5.1 after annealing, whereas the barrier height increased from ~0.52 to 0.71 eV. The bonding structure of the AlN layer was characterized by X-ray photoelectron spectroscopy. Examination of the N 1 s and O 1 s peaks provided direct indication of the most prevalent chemical bonding states of the elements.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1734
Author(s):  
Tatyana Kuznetsova ◽  
Vasilina Lapitskaya ◽  
Jaroslav Solovjov ◽  
Sergei Chizhik ◽  
Vladimir Pilipenko ◽  
...  

The changes in the morphology and the electrophysical properties of the Cr/n-Si (111) structure depending on the rapid thermal treatment were considered in this study. The chromium films of about 30 nm thickness were deposited via magnetron sputtering. The rapid thermal treatment was performed by the irradiation of the substrate’s back side with the incoherent light flux of the quartz halogen lamps in nitrogen medium up to 200–550 °C. The surface morphology was investigated, including the grain size, the roughness parameters and the specific surface energy using atomic force microscopy. The resistivity value of the chromium films on silicon was determined by means of the four-probe method. It was established that at the temperatures of the rapid thermal treatment up to 350 °С one can observe re-crystallization of the chromium films with preservation of the fine grain morphology of the surface, accompanied by a reduction in the grain sizes, specific surface energy and the value of specific resistivity. At the temperatures of the rapid thermal treatment from 400 to 550 °С there originates the diffusion synthesis of the chromium disilicide CrSi2 with the wave-like surface morphology, followed by an increase in the grain sizes, roughness parameters, the specific surface energy and the specific resistivity value.


Sign in / Sign up

Export Citation Format

Share Document