Electrical Properties of Inhomogeneous Pt/GaN Schottky Barrier

2008 ◽  
Vol 600-603 ◽  
pp. 1341-1344 ◽  
Author(s):  
Fabrizio Roccaforte ◽  
Ferdinando Iucolano ◽  
Filippo Giannazzo ◽  
Salvatore di Franco ◽  
Valeria Puglisi ◽  
...  

In this work, the electrical properties of Pt/GaN Schottky contacts were studied. The temperature dependence of the barrier height and ideality factor, and the low experimental value of the Richardson’s constant, were discussed considering the formation of an inhomogenous Schottky barrier. Local current-voltage measurements on Pt/GaN contact, performed with a conductive atomic force microscope, demonstrated a Gaussian distribution of the local barrier height values and allowed to monitor the degree of inhomogeneity of the barrier. The presence of defects, terminating on the bare GaN surface, was correlated with the electrical behavior of the inhomogeneous barrier.

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 283
Author(s):  
Dong-Hyeon Kim ◽  
Michael A. Schweitz ◽  
Sang-Mo Koo

It is shown in this work that annealing of Schottky barrier diodes (SBDs) in the form of Ni/AlN/SiC heterojunction devices in an atmosphere of nitrogen and oxygen leads to a significant improvement in the electrical properties of the structures. Compared to the non-annealed device, the on/off ratio of the annealed SBD devices increased by approximately 100 times. The ideality factor, derived from the current-voltage (IV) characterization, decreased by a factor of ~5.1 after annealing, whereas the barrier height increased from ~0.52 to 0.71 eV. The bonding structure of the AlN layer was characterized by X-ray photoelectron spectroscopy. Examination of the N 1 s and O 1 s peaks provided direct indication of the most prevalent chemical bonding states of the elements.


2012 ◽  
Vol 90 (1) ◽  
pp. 73-81 ◽  
Author(s):  
V. Lakshmi Devi ◽  
I. Jyothi ◽  
V. Rajagopal Reddy

In this work, we have investigated the electrical characteristics of Au–Cu–n-InP Schottky contacts by current–voltage (I–V) and capacitance–voltage (C–V) measurements in the temperature range 260–420 K in steps of 20 K. The diode parameters, such as the ideality factor, n, and zero-bias barrier height, Φb0, have been found to be strongly temperature dependent. It has been found that the zero-bias barrier height, Φb0(I–V), increases and the ideality factor, n, decreases with an increase in temperature. The forward I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the assumption of gaussian distribution of barrier heights, due to barrier inhomogeneities that prevail at the metal–semiconductor interface. The zero-bias barrier height Φb0 versus 1/2kT plot has been drawn to obtain the evidence of a gaussian distribution of the barrier heights. The corresponding values are Φb0 = 1.16 eV and σ0 = 159 meV for the mean barrier height and standard deviation, respectively. The modified Richardson plot has given mean barrier height, Φb0, and Richardson constant, A**, as 1.15 eV and 7.34 Acm−2K−2, respectively, which is close to the theoretical value of 9.4 Acm−2K−2. Barrier heights obtained from C–V measurements are higher than those obtained from I–V measurements. This inconsistency between Schottky barrier heights (SBHs) obtained from I–V and C–V measurements was also interpreted. The temperature dependence of the I–V characteristics of the Au–Cu–n-InP Schottky diode has been explained on the basis of TE mechanism with gaussian distribution of the SBHs.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 199-202 ◽  
Author(s):  
Ahmet Faruk Ozdemir ◽  
Adnan Calik ◽  
Guven Cankaya ◽  
Osman Sahin ◽  
Nazim Ucar

Au/n-GaAs Schottky barrier diodes (SBDs) have been fabricated. The effect of indentation on Schottky diode parameters such as Schottky barrier height (φb) and ideality factor (n) was studied by current-voltage (I-V) measurements. The method used for indentation was the Vickers microhardness test at room temperature. The experimental results showed that the I-V characteristics move to lower currents due to an increase of φb with increasing indentation weight, while contacts showed a nonideal diode behaviour.


1990 ◽  
Vol 181 ◽  
Author(s):  
M.O. Aboelfotoh

ABSTRACTThe electrical properties of metal/Si(100) and metal/Ge(100) interfaces formed by the deposition of metal on both n-type and p-type Si(100) and Ge(100) have been studied in the temperature range 77-295 K with the use of current- and capacitance-voltage techniques. Compound formation is found to have very little or no effect on the Schottky-barrier height and its temperature dependence. For silicon, the barrier height and its temperature dependence are found to be affected by the metal. For germanium, on the other hand, the barrier height and its temperature dependence are unaffected by the metal. The temperature dependence of the Si and Ge barrier heights is found to deviate from the predictions of recent models of Schottky-barrier formation based on the suggestion of Fermi-level pinning in the center of the semiconductor indirect band gap.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Reşit Özmenteş ◽  
Cabir Temirci

AbstractIn this study, CuO/n-Si/Al heterojunction contacts were fabricated by thermal evaporation technique. Electrical characteristics of the samples were investigated with the current-voltage (I-V), capacitance-voltage/frequency (C-V/f), and conductance-voltage (G/V) measurements at room temperature. Also, Cu/n-Si/Al Schottky contact was produced as a reference sample to investigate the electrical properties of the samples. The values of ideality factor (n), barrier height (Φb) and series resistance (Rs) of the samples were calculated from the forward bias current-voltage (I-V) and reverse bias capacitance-voltage (C-V) characteristics. Also, for checking the consistency of the results, Cheung and Norde functions were used. The experimental result values of CuO/n-Si contact were compared with the values of the reference Cu/n-Si Schottky diode. It was observed that the values of the ideality factor and barrier height of the CuO/n-Si heterojunction were higher than those of the Cu/n-Si Schottky contact, while the series resistance was lower. Also, it has been observed that the value of capacitance decreased with increasing frequency and after a certain value of frequency it was almost constant. The ideality factor of CuO/n-Si/Al heterostructure is about 2.40 and so, it is not close to the ideal behavior.


1995 ◽  
Vol 395 ◽  
Author(s):  
A. T. Ping ◽  
A. C. Schmitz ◽  
M. Asif Khan ◽  
I. Adesida

ABSTRACTDry etch damage on n-GaN has been investigated using Pd Schottky diodes fabricated on surfaces etched by conventional reactive ion etching with SiCl4 plasma. The Schottky barrier height and ideality factor were investigated as a function of the plasma self-bias voltage. Current-voltage measurements revealed severe degradation of both the forward and reverse characteristics for plasma self-bias voltages in excess of -150 V.


MRS Advances ◽  
2019 ◽  
Vol 4 (38-39) ◽  
pp. 2127-2134
Author(s):  
Neetika ◽  
Ramesh Chandra ◽  
V. K. Malik

AbstractMolybdenum disulphide (MoS2) is one of the transition metal dichalcogenide (TMD) materials which has attracted attention due to its various interesting properties. MoS2 is very promising for electronic and optoelectronic devices due to its indirect band gap (∼1.2 eV) for few layer and direct band gap (∼1.8 eV) for monolayer MoS2. In MoS2 based Schottky devices, Schottky barrier height depends on the thickness of MoS2 because of its tunable electronic properties. Here, we have used DC sputtering technique to fabricate metal-semiconductor junction of MoS2 with platinum (Pt) metal contacts. In this work, MoS2 thin film (∼10 nm) was deposited on p-Silicon (111) using DC sputtering technique at optimized parameters. Schottky metallization of Pt metal (contact area ∼ 0.785x10-2 cm2) was also done using DC sputtering. Current-voltage (I-V) characteristics of the Pt/MoS2 Schottky junction have been investigated in the temperature range 80-350K. Forward I-V characteristics of Pt/MoS2 junction are analysed to calculate different Schottky parameters. Schottky barrier height increases and ideality factor decreases on increasing the temperature from 80-350K. The I-V-T measurements suggest the presence of local inhomogeneities at the Pt/MoS2 junction. Schottky barrier inhomogeneities occur in case of rough interface. In such cases, the Schottky barrier height does not remain constant and vary locally. Current transport through the Schottky junction is a thermally activated process. As temperature increases, more and more electrons overcome the spatially inhomogeneous barrier height. As a result, the ideality factor becomes close to unity and apparent barrier height increases due to increase in temperature.


2009 ◽  
Vol 23 (05) ◽  
pp. 765-771
Author(s):  
H. ESHGHI ◽  
M. MOHAMMADI

In this paper, the effect of porosity on reverse bias current–voltage characteristics of PtSi/por - Si (p-type) IR detector as a function of temperature is investigated. Our experimental data for two samples with different porosities (50% and 10%) at 300 K and 77 K are reported by Raissi et al.1 These data indicates a breakdown-like behavior. Our analytical model is based on hole thermionic emission with large ideality factor (n ≈ 200). Our calculations show that at each temperature, the Schottky barrier height, as well as the ideality factor, in sample with 10% porosity is bigger than that of 50%. These variations could be due to band gap variations of Si size effect using quantum dot model, and the presence of the relatively high (~1015 cm-2 eV-1) density of states at the silicide/por-silicon interface, respectively.


2020 ◽  
Vol 5 (1) ◽  
pp. 30
Author(s):  
Ali Sadoun

In this work, we have presented a theoretical study of  Au/InSb/InP Schottky diode based on current-voltage (I-V) measurement in the temperature range ( 300 K- 425 K). Electrical parameters of Au/InSb/InP such as barrier height (Φb), ideality factor and series resistance have been calculated by employing the conventional (I-V), Norde, Cheung and Chattopadhyay methods. Measurements show that the Schottky barrier height (SBH), ideality factor and series resistance, RS for Au/InSb/InP Schottky diode in the temperature range (300 K–425 K)  are 0.602-0.69eV, 1.683-1.234 and 84.54-18.95 (Ω), respectively. These parameters were extracted using Atlas-Silvaco-Tcad logical.


Sign in / Sign up

Export Citation Format

Share Document