FEATURES OF ENZYMATIC DEHYDROGENATION OF ORGANIC SUBSTANCES IN SOILS CONTAMINATED WITH HEAVY METALS

2020 ◽  
Vol 15 (10) ◽  
pp. 1312-1320
Author(s):  
E.I. Novoselova ◽  
◽  
O.O. Volkova ◽  
P.K. Khaziev ◽  
R.R. Turanova ◽  
...  

The influence of heavy metals of hazard classes I (Pb, Cd, Zn) and II (Cu) on the dehydrogenase activity of soils, which plays an important role in the transformation of organic matter in them, was studied. An annual model experiment was carried out on three types of medium-loamy soils (gray forest, typical chernozem, urbanozem) with the introduction of different doses of lead and cadmium in the form of acetic acid salts, zinc and copper in the form of sulfates. A decrease in the intensity of dehydrogenation of organic substances with an increase in the dose of the studied metals on 3, 90, 180 and 360 days from the beginning of the experiment was revealed. This was confirmed by reliable correlation coefficients, which were in the range (-0.63) – (-0.99) at p ≤ 0.05. This pattern was already evident at minimal doses of pollutants. An increase in the content of toxicants increased the inhibitory effect. Lead in different doses reduced the intensity of the processes of dehydrogenation of organic substances by 28-46%, cadmium by 4-42%, zinc by 2-35%, copper by 3-45%. During the experiment, the type of soil with greater resistance of dehydrogenases to pollutants was not identified. In annual dynamics, the intensity of dehydrogenase reactions decreased in gray forest soil by 4-40% and typical chernozem by 4-32% and in urbanozem by 3-45%. The processes of transformation of organic compounds in soils are dynamic in time and proceeded differently depending on their type and metal. The established regularities in the change of dehydrogenase activity allow us to recommend it as a criterion for assessing the negative impact of lead, cadmium, zinc and copper on the dehydrogenation of organic substances in soils due to enzyme systems.

2020 ◽  
Vol 99 (5) ◽  
pp. 478-482
Author(s):  
N. P. Setko ◽  
A. G. Setko ◽  
Ekaterina V. Bulycheva ◽  
A. V. Tyurin ◽  
E. Yu. Kalinina

Introduction. Changes in the body of children and adolescents aimed at adapting to environmental factors are determined by genetic polymorphism in xenobiotic biotransformation genes, determining the degree of susceptibility of the child’s body to pollutants, which is the basis of modern personalized preventive medicine when managing risks to the health of the child population under the influence of environmental factors. Material and methods. Trace elements, including heavy metals, lead and cadmium, were determined in the hair of 256 practically healthy teenagers by atomic absorption spectrophotometry. Depending on the level of content of the latter, two groups of adolescents were formed to determine six genes of the cytochrome P-450 family. Group 1 consisted of adolescents whose cadmium lead content exceeded the average Russian indices. The second group included adolescents whose heavy metals were above the level of average Russian standards. Results. Studies have shown that in adolescents of the 1st group, compared with the data of adolescents of the 2nd group, an increase in the number of carriers of two mutant alleles at the locus rs 1048943 (gene CYP1A1) is 3.08 times, rs 464621 (gene CYP1A1) is 1. 8 times; locus rs 2069522 (CYP1A2 gene) 3.63 times; locus rs 1799853 (CYP2C9 * 2 gene) 4.5 times; locus rs 1057910 (gene CYP2C9 * 3) 3.8 times and locus rs 2279343 (gene CYP2B6) 4.25 times. Moreover, carriers of two normal alleles in adolescents of the first group at the locus rs 1048943 (gene CYP1A1) were 5.14 times; locus rs 2279343 (CYP2B6 gene) was 6.5 fold less than among adolescents of the 2nd group; and at the locus rs 464621 (gene CYP1A1), rs 2069522 (gene CYP1A2), rs 1799853 (gene CYP2C9 * 2), rs 1057910 (gene CYP2C9 * 3) there were no carriers of normal homozygotes. Conclusion. Group 1 adolescents with heavy metal contamination of the body are carriers significantly in a greater number of pathological mutations in the genes of the cytochrome P-450 detoxification system in comparison with data from group 2 adolescents.


Author(s):  
Mahmud Mohammed Imam ◽  
Zahra Muhammad ◽  
Amina Zakari

In this research work the concentration of zinc, copper, lead, chromium, cadmium, and nickel in cow milk samples obtained from four different grazing areas   (kakuri, kudendan, malali, kawo) of Kaduna metropolis. The samples were digested by wet digestion technique .The trace element were determined using bulk scientific model VPG 210 model  Atomic Absorption Spectrophotometer (AAS).. The concentration of the determined heavy metal were The result revealed that Cr,  Ni and Cd were not detected in milk samples from Kawo, Malali  and Kudendan whereas lead (Pb) is detected in all samples and found to be above  the stipulated limits of recommended dietary allowance (NRC,1989) given as 0.02mg/day. Cu and Zn are essential elements needed by the body for proper metabolism and as such their deficiency or excess is very dangerous for human health. However, they were found in all samples and are within the recommended limits while Cd (2.13 – 3.15 mg/kg) in milk samples from Kakuri was found to be above such limit (0.5mg/day). Cow milk samples analyzed for heavy metals in this research work pose a threat of lead and cadmium toxicity due to their exposure to direct sources of air, water and plants in these grazing areas, thereby, resulting to a potential health risk to the consumers.


1999 ◽  
Vol 39 (2) ◽  
pp. 201-208 ◽  
Author(s):  
C. Dierkes ◽  
W. F. Geiger

Runoff from highways contains significant loads of heavy metals and hydrocarbons. According to German regulations, it should be infiltrated over embankments to support groundwater-recharge. To investigate the decontaminating effect of greened embankments, soil-monoliths from highways with high traffic densities were taken. Soils were analyzed to characterize the contamination in relation to distance and depth for lead, zinc, copper, cadmium, PAH and MOTH. Lysimeters were charged in the field and laboratory with highway runoff to study the effluents under defined conditions. Concentrations of pollutants in roadside soils depend on the age of embankments and traffic density. Highest concentrations were found in the upper 5 cm of the soil and within a distance of up to two metres from the street. Concentrations of most pollutants decreased rapidly with depth and distance. Lead and cadmium could not be detected in lysimeter effluent. Zinc and copper were found in concentrations that did not exceed drinking water quality limits.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Marian Nabil ◽  
Entesar E. Hassan ◽  
Neven S. Ghaly ◽  
Fawzia A. Aly ◽  
Farouk R. Melek ◽  
...  

Abstract Background The genus Albizia (Leguminoseae) is used in folk medicine for the treatment of a wide range of ailments. Recently, saponins from plant origin have attracted much attention. Saponins are recorded to have a broad range of biological and pharmacological activities. This study was performed to evaluate the protective role of Albizia chinensis bark methanolic extract (MEAC) against the genotoxicity induced by cyclophosphamide (CP) using different mutagenic parameters. Results The results showed that MEAC induced an inhibitory effect against chromosomal aberrations of CP in mouse bone marrow and spermatocytes. Such effect was found to be significant (p < 0.01) with a dose of 100 mg/kg treated once for 24 h and also after repeated treatment at a dose of 25 mg/kg for 7 days. In sperm abnormalities, the protective effect of Albizia extract showed a dose-related relationship. Different doses of MEAC (25, 50, and 100 mg/kg) significantly (p < 0.01) ameliorated sperm abnormalities induced by CP dose-dependently. The percentage of sperm abnormalities was decreased to 5.14 ± 0.72 in the group of animals treated with CP plus MEAC (100 mg/kg) indicating an inhibitory effect of about 50%. Conclusion MEAC at the doses examined was non-genotoxic compared to control (negative) and exhibited a protective role against CP genotoxicity.


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41482-41487
Author(s):  
Chen-Chen Zhu ◽  
Ning Bao ◽  
Xiao-Lei Huo

Children's shoes are potential sources of toxic heavy metals, especially for younger children.


BMJ Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. e039541
Author(s):  
Jun Ho Ji ◽  
Mi Hyeon Jin ◽  
Jung-Hun Kang ◽  
Soon Il Lee ◽  
Suee Lee ◽  
...  

ObjectivesTo investigate the associations between heavy metal exposure and serum ferritin levels, physical measurements and type 2 diabetes mellitus (DM).DesignA retrospective cohort study.SettingChangwon, the location of this study, is a Korean representative industrial city. Data were obtained from medical check-ups between 2002 and 2018.ParticipantsA total of 34 814 male subjects were included. Of them, 1035 subjects with lead exposure, 200 subjects with cadmium exposure and the 33 579 remaining were assigned to cohort A, cohort B and the control cohort, respectively. Data including personal history of alcohol and smoking, age, height, weight, the follow-up duration, haemoglobin A1c (HbA1c), fasting blood sugar (FBS), ferritin levels, and lead and cadmium levels within 1 year after exposure were collected.Primary outcome measureIn subjects without diabetes, changes in FBS and HbA1c were analysed through repeated tests at intervals of 1 year or longer after the occupational exposure to heavy metals.ResultsIn Cohort A, DM was diagnosed in 33 subjects. There was a significant difference in lead concentrations between the subjects diagnosed with DM and those without DM during the follow-up period (3.94±2.92 mg/dL vs 2.81±2.03 mg/dL, p=0.002). Simple exposure to heavy metals (lead and cadmium) was not associated with DM in Cox regression models (lead exposure (HR) 1.01, 95% CI: 0.58 to 1.77, p 0.971; cadmium exposure HR 1.48, 95% CI: 0.61 to 3.55, p=0.385). Annual changes in FBS according to lead concentration at the beginning of exposure showed a positive correlation (r=0.072, p=0.032).ConclusionOur findings demonstrated that simple occupational exposure to heavy metals lead and cadmium was not associated with the incidence of DM. However, lead concentrations at the beginning of the exposure might be an indicator of DM and glucose elevations.


Sign in / Sign up

Export Citation Format

Share Document